Counterexamples to the Eisenbud–Goto regularity conjecture
HTML articles powered by AMS MathViewer
- by Jason McCullough and Irena Peeva;
- J. Amer. Math. Soc. 31 (2018), 473-496
- DOI: https://doi.org/10.1090/jams/891
- Published electronically: November 10, 2017
- HTML | PDF | Request permission
Abstract:
Our main theorem shows that the regularity of nondegenerate homogeneous prime ideals is not bounded by any polynomial function of the degree; this holds over any field $k$. In particular, we provide counterexamples to the longstanding Regularity Conjecture, also known as the Eisenbud–Goto Conjecture (1984). We introduce a method which, starting from a homogeneous ideal $I$, produces a prime ideal whose projective dimension, regularity, degree, dimension, depth, and codimension are expressed in terms of numerical invariants of $I$. The method is also related to producing bounds in the spirit of Stillman’s Conjecture, recently solved by Ananyan and Hochster.References
- Tigran Ananyan and Melvin Hochster, Ideals generated by quadratic polynomials, Math. Res. Lett. 19 (2012), no. 1, 233–244. MR 2923188, DOI 10.4310/MRL.2012.v19.n1.a18
- T. Ananyan and M. Hochster, Small subalgebras of polynomial rings and Stillman’s Conjecture, arXiv:1610.09268, 2016.
- Dave Bayer and David Mumford, What can be computed in algebraic geometry?, Computational algebraic geometry and commutative algebra (Cortona, 1991) Sympos. Math., XXXIV, Cambridge Univ. Press, Cambridge, 1993, pp. 1–48. MR 1253986
- David Bayer and Michael Stillman, On the complexity of computing syzygies, J. Symbolic Comput. 6 (1988), no. 2-3, 135–147. Computational aspects of commutative algebra. MR 988409, DOI 10.1016/S0747-7171(88)80039-7
- Joseph Becker, On the boundedness and the unboundedness of the number of generators of ideals and multiplicity, J. Algebra 48 (1977), no. 2, 447–453. MR 473221, DOI 10.1016/0021-8693(77)90321-0
- Jesse Beder, Jason McCullough, Luis Núñez-Betancourt, Alexandra Seceleanu, Bart Snapp, and Branden Stone, Ideals with larger projective dimension and regularity, J. Symbolic Comput. 46 (2011), no. 10, 1105–1113. MR 2831475, DOI 10.1016/j.jsc.2011.05.011
- Aaron Bertram, Lawrence Ein, and Robert Lazarsfeld, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Amer. Math. Soc. 4 (1991), no. 3, 587–602. MR 1092845, DOI 10.1090/S0894-0347-1991-1092845-5
- Markus Brodmann, Cohomology of certain projective surfaces with low sectional genus and degree, Commutative algebra, algebraic geometry, and computational methods (Hanoi, 1996) Springer, Singapore, 1999, pp. 173–200. MR 1714857
- M. Brodmann and W. Vogel, Bounds for the cohomology and the Castelnuovo regularity of certain surfaces, Nagoya Math. J. 131 (1993), 109–126. MR 1238635, DOI 10.1017/S0027763000004566
- G. Caviglia, Koszul algebras, Castelnuovo–Mumford regularity and generic initial ideals, Ph.D. Thesis, University of Kansas, 2004.
- G. Caviglia, M. Chardin, J. McCullough, I. Peeva, and M. Varbaro, Regularity of prime ideals, submitted.
- Giulio Caviglia and Enrico Sbarra, Characteristic-free bounds for the Castelnuovo-Mumford regularity, Compos. Math. 141 (2005), no. 6, 1365–1373. MR 2188440, DOI 10.1112/S0010437X05001600
- Marc Chardin, Some results and questions on Castelnuovo-Mumford regularity, Syzygies and Hilbert functions, Lect. Notes Pure Appl. Math., vol. 254, Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 1–40. MR 2309925, DOI 10.1201/9781420050912.ch1
- Marc Chardin, Bounds for Castelnuovo-Mumford regularity in terms of degrees of defining equations, Commutative algebra, singularities and computer algebra (Sinaia, 2002) NATO Sci. Ser. II Math. Phys. Chem., vol. 115, Kluwer Acad. Publ., Dordrecht, 2003, pp. 67–73. MR 2030263
- Marc Chardin and Amadou Lamine Fall, Sur la régularité de Castelnuovo-Mumford des idéaux, en dimension 2, C. R. Math. Acad. Sci. Paris 341 (2005), no. 4, 233–238 (French, with English and French summaries). MR 2164678, DOI 10.1016/j.crma.2005.06.020
- Marc Chardin and Bernd Ulrich, Liaison and Castelnuovo-Mumford regularity, Amer. J. Math. 124 (2002), no. 6, 1103–1124. MR 1939782, DOI 10.1353/ajm.2002.0035
- Tommaso de Fernex and Lawrence Ein, A vanishing theorem for log canonical pairs, Amer. J. Math. 132 (2010), no. 5, 1205–1221. MR 2732344, DOI 10.1353/ajm.2010.0008
- Harm Derksen and Jessica Sidman, A sharp bound for the Castelnuovo-Mumford regularity of subspace arrangements, Adv. Math. 172 (2002), no. 2, 151–157. MR 1942401, DOI 10.1016/S0001-8708(02)00019-1
- David Eisenbud, Lectures on the geometry of syzygies, Trends in commutative algebra, Math. Sci. Res. Inst. Publ., vol. 51, Cambridge Univ. Press, Cambridge, 2004, pp. 115–152. With a chapter by Jessica Sidman. MR 2132650, DOI 10.1017/CBO9780511756382.005
- David Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. A second course in commutative algebra and algebraic geometry. MR 2103875
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89–133. MR 741934, DOI 10.1016/0021-8693(84)90092-9
- David Eisenbud and Bernd Ulrich, Notes on regularity stabilization, Proc. Amer. Math. Soc. 140 (2012), no. 4, 1221–1232. MR 2869107, DOI 10.1090/S0002-9939-2011-11270-X
- Hubert Flenner, Die Sätze von Bertini für lokale Ringe, Math. Ann. 229 (1977), no. 2, 97–111 (German). MR 460317, DOI 10.1007/BF01351596
- Gunnar Fløystad, Jason McCullough, and Irena Peeva, Three themes of syzygies, Bull. Amer. Math. Soc. (N.S.) 53 (2016), no. 3, 415–435. MR 3501795, DOI 10.1090/bull/1533
- André Galligo, Théorème de division et stabilité en géométrie analytique locale, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 2, vii, 107–184 (French, with English summary). MR 539695, DOI 10.5802/aif.745
- Vesselin Gasharov, Irena Peeva, and Volkmar Welker, The lcm-lattice in monomial resolutions, Math. Res. Lett. 6 (1999), no. 5-6, 521–532. MR 1739211, DOI 10.4310/MRL.1999.v6.n5.a5
- Daniel Giaimo, On the Castelnuovo-Mumford regularity of connected curves, Trans. Amer. Math. Soc. 358 (2006), no. 1, 267–284. MR 2171233, DOI 10.1090/S0002-9947-05-03671-8
- M. Giusti, Some effectivity problems in polynomial ideal theory, EUROSAM 84 (Cambridge, 1984) Lecture Notes in Comput. Sci., vol. 174, Springer, Berlin, 1984, pp. 159–171. MR 779123, DOI 10.1007/BFb0032839
- L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491–506. MR 704401, DOI 10.1007/BF01398398
- Jürgen Herzog and Takayuki Hibi, Castelnuovo-Mumford regularity of simplicial semigroup rings with isolated singularity, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2641–2647. MR 1974318, DOI 10.1090/S0002-9939-03-06952-1
- Lê Tuân Hoa and Chikashi Miyazaki, Bounds on Castelnuovo-Mumford regularity for generalized Cohen-Macaulay graded rings, Math. Ann. 301 (1995), no. 3, 587–598. MR 1324528, DOI 10.1007/BF01446647
- Craig Huneke, On the symmetric and Rees algebra of an ideal generated by a $d$-sequence, J. Algebra 62 (1980), no. 2, 268–275. MR 563225, DOI 10.1016/0021-8693(80)90179-9
- Jee Koh, Ideals generated by quadrics exhibiting double exponential degrees, J. Algebra 200 (1998), no. 1, 225–245. MR 1603272, DOI 10.1006/jabr.1997.7225
- Andrew R. Kustin, Claudia Polini, and Bernd Ulrich, Rational normal scrolls and the defining equations of Rees algebras, J. Reine Angew. Math. 650 (2011), 23–65. MR 2770555, DOI 10.1515/CRELLE.2011.002
- Sijong Kwak, Castelnuovo regularity for smooth subvarieties of dimensions $3$ and $4$, J. Algebraic Geom. 7 (1998), no. 1, 195–206. MR 1620706
- Si-Jong Kwak, Castelnuovo-Mumford regularity bound for smooth threefolds in $\textbf {P}^5$ and extremal examples, J. Reine Angew. Math. 509 (1999), 21–34. MR 1679165, DOI 10.1515/crll.1999.040
- S. Kwak and J. Park: A bound for Castelnuovo–Mumford regularity by double point divisors, arXiv: 1406.7404v1, 2014.
- Robert Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (1987), no. 2, 423–429. MR 894589, DOI 10.1215/S0012-7094-87-05523-2
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- D. Grayson and M. Stillman: Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
- Ernst W. Mayr and Albert R. Meyer, The complexity of the word problems for commutative semigroups and polynomial ideals, Adv. in Math. 46 (1982), no. 3, 305–329. MR 683204, DOI 10.1016/0001-8708(82)90048-2
- Jason McCullough and Alexandra Seceleanu, Bounding projective dimension, Commutative algebra, Springer, New York, 2013, pp. 551–576. MR 3051385, DOI 10.1007/978-1-4614-5292-8_{1}7
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 155856
- Wenbo Niu, Castelnuovo-Mumford regularity bounds for singular surfaces, Math. Z. 280 (2015), no. 3-4, 609–620. MR 3369342, DOI 10.1007/s00209-015-1439-2
- Atsushi Noma, Generic inner projections of projective varieties and an application to the positivity of double point divisors, Trans. Amer. Math. Soc. 366 (2014), no. 9, 4603–4623. MR 3217694, DOI 10.1090/S0002-9947-2014-06129-1
- Irena Peeva, Graded syzygies, Algebra and Applications, vol. 14, Springer-Verlag London, Ltd., London, 2011. MR 2560561, DOI 10.1007/978-0-85729-177-6
- Henry C. Pinkham, A Castelnuovo bound for smooth surfaces, Invent. Math. 83 (1986), no. 2, 321–332. MR 818356, DOI 10.1007/BF01388966
- Ziv Ran, Local differential geometry and generic projections of threefolds, J. Differential Geom. 32 (1990), no. 1, 131–137. MR 1064868
- Brooke Ullery, Designer ideals with high Castelnuovo-Mumford regularity, Math. Res. Lett. 21 (2014), no. 5, 1215–1225. MR 3294569, DOI 10.4310/MRL.2014.v21.n5.a14
Bibliographic Information
- Jason McCullough
- Affiliation: Mathematics Department, Iowa State University, Ames, Iowa 50011
- MR Author ID: 790865
- Irena Peeva
- Affiliation: Mathematics Department, Cornell University, Ithaca, New York 14853
- MR Author ID: 263618
- Received by editor(s): September 21, 2016
- Received by editor(s) in revised form: August 24, 2017
- Published electronically: November 10, 2017
- Additional Notes: The second author was partially supported by NSF grants DMS-1406062 and DMS-1702125.
- © Copyright 2017 American Mathematical Society
- Journal: J. Amer. Math. Soc. 31 (2018), 473-496
- MSC (2010): Primary 13D02
- DOI: https://doi.org/10.1090/jams/891
- MathSciNet review: 3758150