Monoidal categorification of cluster algebras
HTML articles powered by AMS MathViewer
- by Seok-Jin Kang, Masaki Kashiwara, Myungho Kim and Se-jin Oh;
- J. Amer. Math. Soc. 31 (2018), 349-426
- DOI: https://doi.org/10.1090/jams/895
- Published electronically: December 5, 2017
- HTML | PDF | Request permission
Abstract:
We prove that the quantum cluster algebra structure of a unipotent quantum coordinate ring $A_q(\mathfrak {n}(w))$, associated with a symmetric Kac–Moody algebra and its Weyl group element $w$, admits a monoidal categorification via the representations of symmetric Khovanov–Lauda–Rouquier algebras. In order to achieve this goal, we give a formulation of monoidal categorifications of quantum cluster algebras and provide a criterion for a monoidal category of finite-dimensional graded $R$-modules to become a monoidal categorification, where $R$ is a symmetric Khovanov–Lauda–Rouquier algebra. Roughly speaking, this criterion asserts that a quantum monoidal seed can be mutated successively in all the directions, once the first-step mutations are possible. Then, we show the existence of a quantum monoidal seed of $A_q(\mathfrak {n}(w))$ which admits the first-step mutations in all the directions. As a consequence, we prove the conjecture that any cluster monomial is a member of the upper global basis up to a power of $q^{1/2}$. In the course of our investigation, we also give a proof of a conjecture of Leclerc on the product of upper global basis elements.References
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Arkady Berenstein and Andrei Zelevinsky, String bases for quantum groups of type $A_r$, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 51–89. MR 1237826
- Arkady Berenstein and Andrei Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005), no. 2, 405–455. MR 2146350, DOI 10.1016/j.aim.2004.08.003
- Giovanni Cerulli Irelli, Bernhard Keller, Daniel Labardini-Fragoso, and Pierre-Guy Plamondon, Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math. 149 (2013), no. 10, 1753–1764. MR 3123308, DOI 10.1112/S0010437X1300732X
- Ben Davison, Davesh Maulik, Jörg Schürmann, and Balázs Szendrői, Purity for graded potentials and quantum cluster positivity, Compos. Math. 151 (2015), no. 10, 1913–1944. MR 3414389, DOI 10.1112/S0010437X15007332
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, DOI 10.1090/S0894-0347-01-00385-X
- Christof Geiss, Bernard Leclerc, and Jan Schröer, Semicanonical bases and preprojective algebras, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 2, 193–253 (English, with English and French summaries). MR 2144987, DOI 10.1016/j.ansens.2004.12.001
- Christof Geiß, Bernard Leclerc, and Jan Schröer, Kac-Moody groups and cluster algebras, Adv. Math. 228 (2011), no. 1, 329–433. MR 2822235, DOI 10.1016/j.aim.2011.05.011
- Christof Geiß, Bernard Leclerc, and Jan Schröer, Cluster algebra structures and semicanonical bases for unipotent groups, arXiv:0703039v4 [math.RT].
- Christof Geiss, Bernard Leclerc, and Jan Schröer, Factorial cluster algebras, Doc. Math. 18 (2013), 249–274. MR 3064982
- C. Geiß, B. Leclerc, and J. Schröer, Cluster structures on quantum coordinate rings, Selecta Math. (N.S.) 19 (2013), no. 2, 337–397. MR 3090232, DOI 10.1007/s00029-012-0099-x
- David Hernandez and Bernard Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), no. 2, 265–341. MR 2682185, DOI 10.1215/00127094-2010-040
- David Hernandez and Bernard Leclerc, Monoidal categorifications of cluster algebras of type $A$ and $D$, Symmetries, integrable systems and representations, Springer Proc. Math. Stat., vol. 40, Springer, Heidelberg, 2013, pp. 175–193. MR 3077685, DOI 10.1007/978-1-4471-4863-0_{8}
- Seok-Jin Kang, Masaki Kashiwara, Myungho Kim, and Se-Jin Oh, Symmetric quiver Hecke algebras and $R$-matrices of quantum affine algebras IV, Selecta Math. (N.S.) 22 (2016), no. 4, 1987–2015. MR 3573951, DOI 10.1007/s00029-016-0267-5
- Seok-Jin Kang, Masaki Kashiwara, Myungho Kim, and Se-jin Oh, Simplicity of heads and socles of tensor products, Compos. Math. 151 (2015), no. 2, 377–396. MR 3314831, DOI 10.1112/S0010437X14007799
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- Masaki Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455–485. MR 1203234, DOI 10.1215/S0012-7094-93-06920-7
- Masaki Kashiwara, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858. MR 1240605, DOI 10.1215/S0012-7094-93-07131-1
- Masaki Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383–413. MR 1262212, DOI 10.1215/S0012-7094-94-07317-1
- Masaki Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155–197. MR 1357199
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309–347. MR 2525917, DOI 10.1090/S1088-4165-09-00346-X
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2685–2700. MR 2763732, DOI 10.1090/S0002-9947-2010-05210-9
- Yoshiyuki Kimura, Quantum unipotent subgroup and dual canonical basis, Kyoto J. Math. 52 (2012), no. 2, 277–331. MR 2914878, DOI 10.1215/21562261-1550976
- Yoshiyuki Kimura and Fan Qin, Graded quiver varieties, quantum cluster algebras and dual canonical basis, Adv. Math. 262 (2014), 261–312. MR 3228430, DOI 10.1016/j.aim.2014.05.014
- Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki, $T$-systems and $Y$-systems in integrable systems, J. Phys. A 44 (2011), no. 10, 103001, 146. MR 2773889, DOI 10.1088/1751-8113/44/10/103001
- Philipp Lampe, A quantum cluster algebra of Kronecker type and the dual canonical basis, Int. Math. Res. Not. IMRN 13 (2011), 2970–3005. MR 2817684, DOI 10.1093/imrn/rnq162
- P. Lampe, Quantum cluster algebras of type $A$ and the dual canonical basis, Proc. Lond. Math. Soc. (3) 108 (2014), no. 1, 1–43. MR 3162819, DOI 10.1112/plms/pds098
- Aaron D. Lauda and Monica Vazirani, Crystals from categorified quantum groups, Adv. Math. 228 (2011), no. 2, 803–861. MR 2822211, DOI 10.1016/j.aim.2011.06.009
- B. Leclerc, Imaginary vectors in the dual canonical basis of $U_q(\mathfrak {n})$, Transform. Groups 8 (2003), no. 1, 95–104. MR 1959765, DOI 10.1007/BF03326301
- Kyungyong Lee and Ralf Schiffler, Positivity for cluster algebras, Ann. of Math. (2) 182 (2015), no. 1, 73–125. MR 3374957, DOI 10.4007/annals.2015.182.1.2
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- G. Lusztig, Canonical bases in tensor products, Proc. Nat. Acad. Sci. U.S.A. 89 (1992), no. 17, 8177–8179. MR 1180036, DOI 10.1073/pnas.89.17.8177
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Peter J. McNamara, Representations of Khovanov-Lauda-Rouquier algebras III: symmetric affine type, Math. Z. 287 (2017), no. 1-2, 243–286. MR 3694676, DOI 10.1007/s00209-016-1825-4
- Hiraku Nakajima, Cluster algebras and singular supports of perverse sheaves, Advances in representation theory of algebras, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2013, pp. 211–230. MR 3220538
- Hiraku Nakajima, Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), no. 1, 71–126. MR 2784748, DOI 10.1215/0023608X-2010-021
- Fan Qin, Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Math. J. 166 (2017), no. 12, 2337–2442. MR 3694569, DOI 10.1215/00127094-2017-0006
- R. Rouquier, 2-Kac–Moody algebras, arXiv:0812.5023v1.
- Raphaël Rouquier, Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq. 19 (2012), no. 2, 359–410. MR 2908731, DOI 10.1142/S1005386712000247
- M. Varagnolo and E. Vasserot, Canonical bases and KLR-algebras, J. Reine Angew. Math. 659 (2011), 67–100. MR 2837011, DOI 10.1515/CRELLE.2011.068
Bibliographic Information
- Seok-Jin Kang
- Affiliation: Research Institute of Computers, Information and Communication, Pusan National University, 2, Busandaehak-ro Pusan 46241, Korea
- MR Author ID: 307910
- Email: soccerkang@hotmail.com
- Masaki Kashiwara
- Affiliation: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
- MR Author ID: 98845
- Email: masaki@kurims.kyoto-u.ac.jp
- Myungho Kim
- Affiliation: Department of Mathematics, Kyung Hee University, Seoul 02447, Korea
- MR Author ID: 892352
- Email: mkim@khu.ac.kr
- Se-jin Oh
- Affiliation: Department of Mathematics Ewha Womans University, Seoul 03760, Korea
- MR Author ID: 933109
- Email: sejin092@gmail.com
- Received by editor(s): February 15, 2015
- Received by editor(s) in revised form: December 19, 2016, and July 15, 2017
- Published electronically: December 5, 2017
- Additional Notes: This work was supported by Grant-in-Aid for Scientific Research (B) 22340005, Japan Society for the Promotion of Science.
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2017R1C1B2007824).
This work was supported by NRF Grant # 2016R1C1B2013135.
This research was supported by Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Development Program 2017. - © Copyright 2017 American Mathematical Society
- Journal: J. Amer. Math. Soc. 31 (2018), 349-426
- MSC (2010): Primary 13F60, 81R50, 16Gxx, 17B37
- DOI: https://doi.org/10.1090/jams/895
- MathSciNet review: 3758148