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INTRODUCTION

The purpose of this paper is to provide a monoidal categorification of the quan-
tum cluster algebra structure on the unipotent quantum coordinate ring A,(n(w)),
which is associated with a symmetric Kac-Moody algebra g and a Weyl group
element w.

The notion of cluster algebras was introduced by Fomin and Zelevinsky in [0] for
studying total positivity and upper global bases. Since their introduction, a lot of
connections and applications have been discovered in various fields of mathematics
including representation theory, Teichmiiller theory, tropical geometry, integrable
systems, and Poisson geometry.

A cluster algebra is a Z-subalgebra of a rational function field given by a set
of generators, called the cluster variables. These generators are grouped into over-
lapping subsets, called the clusters, and the clusters are defined inductively by a
procedure called mutation from the initial cluster {X;}1<i<r, which is controlled
by an exchange matrix B. We call a monomial of cluster variables in each cluster
a cluster monomial.

Fomin and Zelevinsky proved that every cluster variable is a Laurent polynomial
of the initial cluster {X;}1<i<,, and they conjectured that this Laurent polynomial
has positive coefficients [6]. This positivity conjecture was proved by Lee and Schif-
fler in the skew-symmetric cluster algebra case in [30]. The linearly independence
conjecture on cluster monomials was proved in the skew-symmetric cluster algebra
case in [4].

The notion of quantum cluster algebras, introduced by Berenstein and Zelevinsky
in [3], can be considered as a g-analogue of cluster algebras. The commutation
relation among the cluster variables is determined by a skew-symmetric matrix L.
As in the cluster algebra case, every cluster variable belongs to Z[¢*'/?][X ] 1<i<,
[3] and is expected to be an element of Zso[¢='/?][XF]1<i<,, which is referred
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to as the quantum positivity conjecture (cf. [5l Conjecture 4.7]). In [24], Kimura
and Qin proved the quantum positivity conjecture for quantum cluster algebras
containing acyclic seed and specific coefficients.

The unipotent quantum coordinate rings A,(n) and A,;(n(w)) are examples of
quantum cluster algebras arising from Lie theory. The algebra A,(n) is a ¢-
deformation of the coordinate ring C[N] of the unipotent subgroup and is isomor-
phic to the negative half U, (g) of the quantum group as Q(g)-algebras. The algebra
Ay(n(w)) is a Q(g)-subalgebra of A,(n) generated by a set of the dual Poincaré-
Birkhoff-Witt (PBW) basis elements associated with a Weyl group element w. The
unipotent quantum coordinate ring A,(n) has a very interesting basis, the so-called
upper global basis (dual canonical basis) B"P, which is dual to the lower global basis
(canonical basis) [16[31]. The upper global basis has been studied emphasizing its
multiplicative structure. For example, Berenstein and Zelevinsky [2] conjectured
that, in the case g is of type A,, the product biby of two elements b; and by in B"P
is again an element of B"P up to a multiple of a power of ¢ if and only if they are
g-commuting; i.e., byby = ¢™bsby for some m € Z. This conjecture turned out to be
not true in general, because Leclerc [29] found examples of an imaginary element
b € B" such that b? does not belong to B'"P. Nevertheless, the idea of considering
subsets of B"P whose elements are g-commuting with each other and studying the
relations between those subsets has survived, and it became one of the motivations
of the study of (quantum) cluster algebras.

In a series of papers [8LOLIT], Geif}, Leclerc, and Schréer showed that the unipo-
tent quantum coordinate ring A,(n(w)) has a skew-symmetric quantum cluster
algebra structure whose initial cluster consists of the so-called unipotent quantum
minors. In [23], Kimura proved that A,(n(w)) is compatible with the upper global
basis B"P of A,(n); i.e., the set B'"P(w) := A,(n(w)) N B is a basis of 4,(n(w)).
Thus, with a result of [4], one can expect that every cluster monomial of A4(n(w))
is contained in the upper global basis B"P(w), which is named the quantization
congecture by Kimura [23].

Conjecture ([II, Conjecture 12.9], [23] Conjecture 1.1(2)]). When g is a sym-
metric Kac-Moody algebra, every quantum cluster monomial in A2 (n(w)) =

Q(¢'7?) ®q(q) Aq(n(w)) belongs to the upper global basis B"P up to a power of ql/2.

It can be regarded as a reformulation of Berenstein—Zelevinsky’s ideas on the
multiplicative properties of B"P. There are some partial results of this conjecture.
It is proved for g = A, A3, Ay and A;(n(w)) = Ay(n) in [2] and [7, Section 12].
When g = Agl), A, and w is a square of a Coxeter element, it is shown in [20]
and [27] that the cluster variables belong to the upper global basis. When g is
symmetric and w is a square of a Coxeter element, the conjecture is proved in
[24]. Notably, Qin provided recently a proof of the conjecture for a large class with
a condition on the Weyl group element w [37]. Note that Nakajima proposed a
geometric approach of this conjecture via quiver varieties [35].

In this paper, we prove the above conjecture completely by showing that there
exists a monoidal categorification of Ay /2(n(w)).

In [I2], Hernandez and Leclerc introduced the notion of monoidal categorification
of cluster algebras. A simple object S of a monoidal category C is real if S® S is
simple, and it is prime if there exists no nontrivial factorization S ~ S7 ® S;. They
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say that C is a monoidal categorification of a cluster algebra A if the Grothendieck
ring of C is isomorphic to A and if

(M1) the cluster monomials of A are the classes of real simple objects of C,

(M2) the cluster variables of A are the classes of real simple prime objects of C.

(Note that the above version is weaker than the original definition of the monoidal
categorification in [I2].) They proved that certain categories of modules over sym-
metric quantum affine algebras U, é (g) give monoidal categorifications of some cluster
algebras. Nakajima extended this result to the cases of the cluster algebras of types
A, D, E [30] (see also [13]). It is worthwhile to remark that once a cluster algebra
A has a monoidal categorification, the positivity of cluster variables of A and the
linear independence of cluster monomials of A follow (see [12], Proposition 2.2]).

In this paper, we refine Hernandez—Leclerc’s notion of monoidal categorifications
including the quantum cluster algebra case. Let us briefly explain it. Let C be
an abelian monoidal category equipped with an auto-equivalence ¢ and a tensor
product which is compatible with a decomposition C = EBﬂEQ Cs. Fix a finite
index set J = Jex U Jg with a decomposition into the exchangeable part and the
frozen part. Let . be a quadruple ({M;}ics, L, B, D) of a family of simple objects
{M;};c; in €, an integer-valued skew-symmetric J x J-matrix L = ();;), an
integer-valued J X Jo-matrix B = (b;,;) with a skew-symmetric principal part,
and a family of elements D = {d;};cs in Q. If this datum satisfies the conditions
in Definition [G.2.1] below, then it is called a quantum monoidal seed in C. For
each k € Je, we have mutations pux(L), ur(B), and ux(D) of L, B, and D,
respectively. We say that a quantum monoidal seed . = ({M, }ics, L, B, D) admits
a mutation in direction k € Jo if there exists a simple object Mj, € C,,, (p), which
fits into two short exact sequences (L2 below in C reflecting the mutation rule
in quantum cluster algebras, and thus obtained quadruple () := ({M;}izr U
{M}}, pi (L), g (B), (D)) is again a quantum monoidal seed in C. We call 1, (.%)
the mutation of .% in direction k € Ju.

Now the category C is called a monoidal categorification of a quantum cluster
algebra A over Z[q*t'/?] if

(i) the Grothendieck ring Z[g*'/?] ®z[q+1) K (C) is isomorphic to A,
(i) there exists a quantum monoidal seed . = ({M; }ics, L, B, D)
(0.1) in C such that [.%]:= ({g™[M;]}ic, L, B) is a quantum seed of
A for some m; € %Z,
(ii) . admits successive mutations in all directions in Jox.

The existence of monoidal category C which provides a monoidal categorification
of quantum cluster algebra A implies the following:

(QM1) Every quantum cluster monomial corresponds to the isomorphism class
of a real simple object of C. In particular, the set of quantum cluster
monomials is Z[g*!/?]-linearly independent.

(QM2) The quantum positivity conjecture holds for A.

In the case of unipotent quantum coordinate ring A4(n), there is a natural
candidate for monoidal categorification, the category of finite-dimensional graded
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modules over a Khovanov-Lauda—Rouquier algebras ([2122], [38]). The Khovanov—-
Lauda-Rouquier algebras (abbreviated by KLR algebras), introduced by Khovanov—
Lauda [211 22] and Rouquier [38] independently, are a family of Z-graded
algebras which categorifies the negative half U, (g) of a symmetrizable quantum
group U,(g). More precisely, there exists a family of algebras {R(—f)}zeq- such
that the Grothendieck ring of R-gmod := Ps.q- (—f)-gmod, the direct sum of
the categories of finite-dimensional graded R(—g)-modules, is isomorphic to the
integral form Ag(n)zg+1) of Ay(n) ~ U, (g). Here the tensor functor ® of the
monoidal category R-gmod is given by the convolution product o, and the action of
q is given by the grading shift functor. In [39L[40], Varagnolo—Vasserot and Rouquier
proved that the upper global basis B"P of A,(n) corresponds to the set of the iso-
morphism classes of all self-dual simple modules of R-gmod under the assumption
that R is associated with a symmetric quantum group U,(g) and the base field is
of characteristic 0.

Combining works of [TT,23[40], the unipotent quantum coordinate ring A,(n(w))
associated with a symmetric quantum group U,(g) and a Weyl group element w is
isomorphic to the Grothendieck group of a monoidal abelian full subcategory C,, of
R-gmod whose base field k is of characteristic 0, satisfying the following properties:
(i) Cy is stable under extensions and grading shift functor, (ii) the composition
factors of M € C,, are contained in B"P(w) (see Definition IT.21]). In particular,
the first condition in (0I]) holds. However, it is not evident that the second and
the third conditions in (0.1 on quantum monoidal seeds are satisfied. The purpose
of this paper is to ensure that those conditions hold in C,,.

In order to establish it, in the first part of the paper, we start with a continuation
of the work of [15] about the convolution products, heads, and socles of graded
modules over symmetric KLR algebras. One of the main results in [I5] is that the
convolution product M o N of a real simple R(f)-module M and a simple R(y)-
module N has a unique simple quotient and a unique simple submodule. Moreover,
if MoN ~ NoM up to a grading shift, then M o N is simple. In such a case we say
that M and N commute. The main tool of [15] was the R-matrix Ty N constructed
in [T4], which is a homogeneous homomorphism from M o N to N o M of degree
A(M, N). In this work, we define some integers encoding necessary information on
MoN,

R(M,N) = S (MM N) +(8,9), o(M, N) = £ (A(M, N) + A(N, M),
and study the representation theoretic meaning of the integers A(M, N), /N\(M ,N),
and o(M, N).

We then prove Leclerc’s first conjecture [29] on the multiplicative structure of
elements in B"P, when the generalized Cartan matrix is symmetric (Theorem 1T
and Theorem [L2T]). Theorem E21]is due to McNamara [34, Lemma 7.5], and the
authors thank him for informing us of his result.

We say that b € BUP is real if b? € ¢* B := [,ez " B™.

Theorem (|29, Conjecture 1]). Let by and ba be elements in B"P such that one of
them is real and biby & ¢“B"P. Then the expansion of biby with respect to BUP is
of the form

biby = ¢V + ¢°b" + Z Vou b (D)
c#£b! b
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where b £ b, m,s € Z, m < s, and

Voo (@) € A" Zlg g 2.

More precisely, we prove that ¢™b’ and ¢°b” correspond to the simple head and
the simple socle of M o N, respectively, when b; corresponds to a simple module
M and by corresponds to a simple module V.

Next, we move to provide an algebraic framework for monoidal categorification of
quantum cluster algebras. In order to simplify the conditions of quantum monoidal
seeds and their mutations, we introduce the notion of admissible pairs in C,. A
pair ({M;}ies, B) is called admissible in C,, if (i) {M;}sc is a commuting family of
self-dual real simple objects of C,,, (ii) B is an integer-valued J X Jex-matrix with
a skew-symmetric principal part, and (iii) for each k € J, there exists a self-dual
simple object Mj, in C, such that M} commutes with M; for all i € J\ {k} and
there are exact sequences in C,,

0=q @ MO o AOMONL oM o O MUY 0,

(0 2) bk >0 - bi, k<0
0— q @ Mi@(—bi,k) N qA(M’,C’JVIk)M]; o M, — @ MZQbi’k N 07
b,k <0 bi,x>0

where A(Mj, M;j,) and /~\(M,’c, My,) are prescribed integers and () is a convolution
product up to a power of q. N

For an admissible pair ({M;}ics, B), let A = (A, ;) jes be the skew-symmetric
matrix where A;; is the homogeneous degree of YRR the R-matrix between
M, and M;, and let D = {d;};cs be the family of elements in Q given by M; €
R(—d;)-gmod.

Then, together with the result of [I1], our main theorem in the first part of the
paper reads as follows.

Main Theorem 1 (Theorem [.T.3 and Corollary [[L.TA). If there exists an admis-
sible pair ({M;Yicx, B) in Cy such that [.#] := ({g= M)WMDV AN T} e g, — A,
E,D) is an initial seed of Aji/2(n(w)), then C, is a monoidal categorification of
Aql/2 (n(w))

The second part of this paper (Sections 8-11) is mainly devoted to showing that
there exists an admissible pair in C,, for every symmetric Kac-Moody algebra g and
its Weyl group element w. In [I1], GeiB, Leclerc, and Schréer provided an initial
quantum seed in A,(n(w)) whose quantum cluster variables are unipotent quantum
minors. The unipotent quantum minors are elements in A,(n), which are regarded
as a g-analogue of a generalization of the minors of upper triangular matrices. In
particular, they are elements in B"P. We define the determinantial module M(p, ()
to be the simple module in R-gmod corresponding to the unipotent quantum minor
D(u,¢) under the isomorphism A, (n)zjg21] =~ K(R-gmod). Here (u,() is a pair of
elements in the weight lattice of g satisfying certain conditions.

Our main theorem of the second part is as follows.

Main Theorem 2 (Theorem MT.2.2)). Let ({D(k,0)}1<i<rs B,L) be the initial
quantum seed of Ay(n(w)) in [1I] with respect to a reduced expression W = s;, -+ - S;
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ofw. Let M(k,0) := M(s;, - - - si, i, , @i, ) be the determinantial module correspond-
ing to the unipotent quantum minor D(k,0). Then the pair

({M(k,0) }r<k<r, B)
is admissible in C,,.

Combining these theorems, the category C,, gives a monoidal categorification of
the quantum cluster algebra A,(n(w)). If we take the base field of the symmetric
KLR algebra to be of characteristic 0, these theorems, along with Theorem 2.1.4]
due to [39,40], imply the quantization conjecture.

The most essential condition for an admissible pair is that there exists the first
mutation M(k,0)" in the exact sequences ([Q.2) for each k € Jox. To establish
this, we investigate the properties of determinantial modules and those of their
convolution products. Note that a unipotent quantum minor is the image of a global
basis element of the quantum coordinate ring Aq(g) under a natural projection
Ag(g) = Ag(n). Since there exists a bicrystal embedding from the crystal basis
B(A4(g)) of Ay(g) to the crystal basis B(U,(g)) of the modified quantum groups
ﬁq(g), this investigation amounts to the study of the interplay among the crystal
and global bases of A,(g), ﬁq(g), and A,(n). Hence we start the second part of the
paper with the studies of those algebras and their crystal/global bases along the
line of the works in [I7HI9].

Next, we recall the (unipotent) quantum minors and the T-system, an equation
consisting of three terms in products of unipotent quantum minors studied in [3L11].
A detailed study of the relation between A4(g), U,(g), and A,(n) and their global
bases enables us to establish several equations involving unipotent quantum minors
in the algebra A, (n). The upshot is that those equations can be translated into exact
sequences in the category R-gmod involving convolution products of determinantial
modules via the categorification of U, (g). It enables us to show that the pair
({M(k, 0)}1 <<, B) is admissible.

The paper is organized as follows. In Section 1, we briefly review basic materials
on quantum group U, (g) and KLR algebra R. In Section 2, we continue the study in
[15] of the R-matrices between R-modules. In Section 3, we derive certain properties
of /N\(M, N) and 5(M, N). In Section 4, we prove the first conjecture of Leclerc in
[29]. In Section 5, we recall the definition of quantum cluster algebras. In Section
6, we give the definitions of a monoidal seed, a quantum monoidal seed, a monoidal
categorification of a cluster algebra, and a monoidal categorification of a quantum
cluster algebra. In Section 7, we prove Main Theorem 1. In Section 8, we review the
algebras A,(g), U,(g), and A,(n), and study the relations among them. In Section
9, we study the properties of quantum minors including T-systems and generalized
T-systems. In Section 10, we study the determinantial modules over KLR algebras.
Finally, in Section 11, we establish Main Theorem 2.

1. QUANTUM GROUPS AND GLOBAL BASES

In this section, we briefly recall the quantum groups and the crystal and global
bases theory for U,(g). We refer to [I6L17,20] for materials in this subsection.
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1.1. Quantum groups. Let I be an index set. A Cartan datum is a quintuple
(A,P,II,PY IIY) consisting of
(i) an integer-valued matrix A = (a;;); jer, called the symmetrizable general-
ized Cartan matriz, which satisfies
(a) aj; = 2 (’L S I),
(b) aij <0 (i # j),
(c) there exists a diagonal matrix D = diag(s; | ¢ € I) such that DA is
symmetric, and s; are relatively prime positive integers,
) a free abelian group P, called the weight lattice,
ii) II={o; € P| i€ I}, called the set of simple roots,
) PV :=Homg(P,Z), called the co-weight lattice,
) IIV = {h; | i € I} C PY, called the set of simple coroots, satisfying the
following properties:
(1) <h,i,O[j> = Qjj for all 1,7 €1,
(2) II is linearly independent over Q,
(3) for each i € I, there exists w; € P such that (h;,w;) = 0;; for all
jel.
We call w; the fundamental weights.
The free abelian group Q := @ Za; is called the root lattice. Set QT = Zz‘e 1 Z>o

il
a; CQand Q" =3",.; Z<oa; C Q. For =3, mia; € Q, we set |B]=>", . [mal.
Set h = Q ®z PY. Then there exists a symmetric bilinear form ( , ) on h*
satisfying
2 Iz A .
(v, o) =szai; (3,5 € I) and (b, \) = (((lo_é a-)) for any A € h* and i € I.

The Weyl group of g is the group of linear transformations on h* generated by
s; (i € I), where

si(A) == A= (h;, N, for Aep®, iel.
Let ¢ be an indeterminate. For each i € I, set ¢; = ¢*.

Definition 1.1.1. The quantum group associated with a Cartan datum (A, P,1I,
PV,I1V) is the algebra U,(g) over Q(q) generated by e;, f; (i € I) and ¢ (h € PY)
satisfying the following relations:

¢ =1, q"¢" =¢""" forh,n €P,

qheiq_h = qu)ei, thiq_h _ q—<h,ai)fi forhePVlicl,
eifj = fiei = 51‘le§7 where t; = g™,

1—a;; ' ’

r=0 i

1—a;j
2, [l _raij] TR =00 i A

r=0
q; — Q‘_n n m [m]Z'
ere, we set [n); % — ql_1 » [l k=1[kls, an [nL [m — n];![n];! o

t € I and m,n € Zx>( such that m > n.
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Let U,f (g) (resp. U, (g)) be the subalgebra of U, (g) generated by e;’s (resp. f;’s),
and let U (g) be the subalgebra of U,(g) generated by ¢" (h € PV). Then we have

the triangular decomposition
Uyg(9) = Uy (9) @ Ug(9) ® Uy (9),
and the weight space decomposition
9) = P U,(0)s
BeQ

where Uq( {xGU )| g™ th—q<hﬁxforanyh€P}.
There are Q( )- lgebra antiautomorphisms ¢ and * of U,(g) given as follows:

ele)) = fi, w(fi)=ei o(d") =q",
e; = e, Ii=r (") =q "

There is also a Q-algebra automorphism ~ of U,(g) given by

ei=e, f[i=fi, "=a" d=4q
We define the divided powers by
e =/l £ = /Il (n € Zso).
Let us denote by Uy(9)z[q+1) the Z[g*']-subalgebra of U,(g) generated by e(") f(")

and H {ql k h}

Let us also denote by Uy (8)z421] the Z[g*!]-subalgebra of U, (g) generated by fi(n)
(i € I, n € Zxp), and by U (g)z(4+1] the Z[g*!]-subalgebra of U/ (g) generated by

™ (e, nels).

-1

(i €1, n€Zsy, h€PV), where {z} = (x—271)/(¢g—q ).

1.2. Integrable representations. A U,(g)-module M is called integrable if M =
D, cp My where M, :={m € M | ¢"m = ¢"Mm}, dim M, < oo, and the
actions of e; and f; on M are locally nilpotent for all ¢ € I. We denote by
Oint(g) the category of integrable left U,(g)-modules M satistying that there ex-
ist finitely many weights A1, ..., A, such that wt(M) C U;(A\; + Q7). The
category Oint(g) is semisimple with its simple objects being isomorphic to the
highest weight modules V(A) with highest weight vector uy of highest weight
A€ Pt :={ueP| (hiu) >0 forall i € I}, the set of dominant integral weights.

For M € Oin(g), let us denote by D, M the left U,(g)-module
®D,,cp Homg(y) (M, Q(q)) with the action of Uy(g) given by

(ap)(m) = Y(p(a)m) for v € DLM, m € M, and a € Ugy(g).

Then D, M belongs to Oint(g).
For a left U,(g)-module M, we denote by M" the right U,(g)-module {m" | m €
M} with the right action of U,(g) given by

(m") x = (e(x)m)" for m € M and x € Uy(g).

We denote by O}, (g) the category of right integrable U,(g)-modules M* such that
M e Oint (g)
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There are two comultiplications Ay and A_ on U,(g) defined as follows:

(1.1)
Ap(e) =e;@1+1;®e;, AL(fi) =0t +10f;, A" =¢"®",
(1.2)
A(e) =€t ' +1®e;, A_(fi)=fi®l+t;0fi, A_(") ="
For two U, (g)-modules M; and My, let us denote by M ®, My and My ®_ My

the vector space M; ®gq(q) M2 endowed with U, (g)-module structure induced by the
comultiplications A and A_, respectively. Then we have

Dy (M @1 M) ~ (DypMi) @x (DyMa).

For any i € I, there exists a unique Q(g)-linear endomorphism e of U, (g) such
that

i) =0 G €D, elley) = (o) +a" P alely) (z € Uy (9)5.y € Uy (0))-
The quantum boson algebra B,(g) is defined as the subalgebra of Endgq)(U,(g))
generated by f; and €] (¢ € I). Then By(g) has a Q(g)-algebra anti-automorphism
¢ which sends e} to f; and f; to e]. As a By(g)-module, U, (g) is simple.
The simple U,(g)-module V(\) and the simple B,(g)-module U, (g) have a

unique non-degenerate symmetric bilinear form (, ) such that

(ux,uy) =1 and (2zu,v) = (u, p(z)v) for u,v € V(A) and x € Uy(g),

(1,1) =1 and (zu,v) = (u, p(z)v) for u,v € U, (g) and = € By(g).

Note that (, ) induces the non-degenerate bilinear form

() V)" xV(A) = Qg)

given by (u",v) = (u,v), by which D,V () is canonically isomorphic to V().

1.3. Crystal bases and global bases. For a subring A of Q(q), we say that L
is an A-lattice of a Q(q)-vector space V if L is a free A-submodule of V' such that
V =0Q(q)®a L.

Let us denote by Ag (resp. A ) the ring of rational functions in Q(g) which are
regular at ¢ = 0 (resp. ¢ = 00). Set A :=Q[q*!].

Let M be a Uy(g)-module in Ojn(g). Then, for each ¢ € I, any u € M can be
uniquely written as

u = Z fi(n)un with e;u,, = 0.
n>0

We define the lower Kashiwara operators by

~10w Z f(n 1) u, and flow Z f n+1

n>1 n>0

and the upper Kashiwara operators by
&P (u) = &™q; e and fiP(w) = fi™Vg; Hiu

Similarly, for each i € I, any element x € U, (g) can be written uniquely as

T = Z fi(")xn with efx, = 0.

n>0
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We define the Kashiwara operators é;, f; on U, (g) by
éix = Z fi(nfl)xm ﬂl‘ — Z fi(nJrl)xn.
n>1 n>0

We say that an Ap-lattice L of M is a lower (resp. upper) crystal lattice of M
if L =@ L,, where L, = L N M, and it is invariant by the lower (resp. upper)
nebP
Kashiwara operators.
Lemma 1.3.1. Let L be a lower crystal lattice of M € Oin(g). Then we have

(i) Dacp g~ AMN/2Ly is an upper crystal lattice of M.

(ii) LY :={Y €e D,M | (¢, L) € Ao} is an upper crystal lattice of D, M.
Proof. (i) Let ¢y be the endomorphism of M given by ¢arlar, = ¢~ NN/ 2idyy, .
Then we have é;® = ¢ps 0 €Y 0 ¢y} and £ = ¢ps 0 f1O% 0 63}

Item (ii) follows from (3.2.1), (3.2.2) in [I7]. Note that the definition of up-

per Kashiwara operators are slightly different from the ones in [I7], but similar
properties hold. O

Definition 1.3.2. A lower (resp. upper) crystal basis of M consists of a pair (L, B)
satisfying the following conditions:

(i) L is a lower (resp. upper) crystal lattice of M,
(ii) B = UyepBy, is a basis of the Q-vector space L/qL, where B, = BN
(Ln/aLy), ~
(iii) the induced maps é; and f; on L/qL satisfy

&:B, f;B Cc BU{0}, and fib="Vif and only if b= &b’ for b,b € B.
Here €; and f, denote the lower (resp. upper) Kashiwara operators.
For A € P*, let uy be the highest weight vector of V(\). Let L'°V()) be the
Ay-submodule of V'(\) generated by {f“ . 'filuA |l €Z>o, i1,...,01 € I}, and let
B(\) be the subset of L°V()\)/qL'¥()\) given by

BIOW()\) = {f“ . --filu,\ mod gL(A) |l € Z>o, 41,...,41 € I} \{0}.

It is shown in [I6] that (L% ()), B'°¥()\)) is a lower crystal basis of V(\). Using
the non-degenerate symmetric bilinear form (, ), V/(A) has the upper crystal basis
(L"P(X), B"P(\)) where

L (\) :={u e V(\) | (u,L'"(\)) C A},
and B"(\) C L"()\)/qL"P(\) is the dual basis of B'°"(\) with respect to the
induced non-degenerate pairing between L™ (\)/qL"P()\) and L°%(\)/qL'*% ().

An (abstract) crystal is a set B together with maps

wt: B— P, &;,0;: B—ZL{co} and &, fi: B— BLU{0} forie I,
such that

(C1) @i(b) = €i(b) + (hi, wt(b)) for any i,

(C2) if b € B satisfies €;(b) # 0, then

Ei(éib) = El(b) — 1, (pl(ézb) = L,Dl(b) + 1, Wt(élb) = Wt(b) + (679
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(C3) if b € B satisfies f;(b) # 0, then
ei(fib) = &i(b) + 1, @i(fib) = @i(b) — 1, wt(fib) = wt(b) — a,
(C4) for b,b' € B, b/ = f;b if and only if b= &1/,
(C5) if @;(b) = —o0, then &b = f;b = 0.

Recall that, with the notions of morphism and tensor product rule of crystals,
the category of crystals becomes a monoidal category [19]. If (L, B) is a crystal
basis of M, then B is an abstract crystal. Since B°V()\) ~ BUP()), we drop the
superscripts for simplicity.

Let V be a Q(g)-vector space, and let Ly be an Ag-lattice of V', Lo an Aoo-
lattice of V', and VA an A-lattice of V. We say that the triple (Va, Lo, Loo) is
balanced if the following canonical map is a Q-linear isomorphism:

E = VAﬂLQﬂLOOL}Lo/qLQ.

The inverse of the above isomorphism G: Lg/qLo == E is called the globalizing

map. If (Va, Lo, L) is balanced, then we have

Q) RE-"5V, ARE "5 Vs, Ag® E 225 Ly, and A ® E 22 L.
Q Q Q Q

Hence, if B is a basis of Lo/qLg, then G(B) is a basis of V, Va, Lo, and L. We
call G(B) a global basis.
We define the two A-lattices of V(A) by

Vlow()\)A = (@@Uq_(g)z[qil])lu and
VPN ={ueVQ) | (u, V(M) C A}.

Recall that there is a Q-linear automorphism—on V(A) defined by
Puy = Puy, for P € U(g).

Then (V% (X\)a, L°¥(X), L'o¥(X)) and (V"P(X)a, L™ (X), L' (X)) are balanced.
Let us denote by GY% and G\" the associated globalizing maps, respectively. (If
there is no danger of confusion, we simply denote them G°¥ and G"P, respectively.)
Then the sets

BY(\) = {GX¥(b) | be BY(\)} and B"P()\):={G\’(b) | b€ B"P(\)}
form Z[q*']-bases of

VIOW(A)Z[qil] = Uq(g)z[qil]m\ and
Vup(A)Z[qil] = {u S V()\) | (u, Vlow()\)z[q:tl]) C Z[qil}},

respectively. They are called the lower global basis and the upper global basis of
V(A).
Set

L(oc0) := Z Aoﬁ»l---fil-lcU;(g) and
l€Z>q, 41,1 €T

B(o0) := {f“ <+ fi, -1 mod gL(c0) |l € Z>g,i1,...,4 € I} C L(o0)/qL(c0).
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Then (L(c0), B(o0)) is a lower crystal basis of the simple B,(g)-module U, (g) and
the triple (Q® U, (g)z[4+1], L(o0), L(00)) is balanced. Let us denote the globalizing
map by G'°V. Then the set

B (U (9)) = {G"(b) | b € B(o0)}

q

forms a Z[g*!]-basis of U, (8)zjg=1) and is called the lower global basis of U, (g).
Let us denote by

(1.3) B (U, (9)) :={G"(b) | b € B(0)}
the dual basis of B (U, (g)) with respect to (, ). Then it is a Z[g*!]-basis of
Uy @312 = {x € Uy (9) | (2, Uy (9)z4+1) € Zla ™'}

and called the upper global basis of U; (g). Note that U (9)\2/[qi1] has a Z[qT]-
algebra structure as a subalgebra of U, (g) (see also Section [8.2)).

2. KLR ALGEBRAS AND R-MATRICES

2.1. KLR algebras. We recall the definition of Khovanov—Lauda—Rouquier alge-
bra or quiver Hecke algebra (hereafter, we abbreviate it as KLR algebra) associated
with a given Cartan datum (A, P,II,PY IIV).

Let k be a base field. For ,j € I such that ¢ # j, set

Sig={(p.q) € Z% | (o, i)p + (o), ) q = —2(evs, ) } -

Let us take a family of polynomials (Q;;): jer in klu, v] which are of the form

0 ifi=j,
Qij(u,v) = e
(2.1) vl > tigip,quPv? ifi#j
’ (p.9)€Si,;
with 2; j.p.q € k such that Q; j(u,v) = Q;i(v,u) and t; j. a0 €
k*.
We denote by &,, = (s1,...,8,—1) the symmetric group on n letters, where

s; = (i,4 + 1) is the transposition of ¢ and ¢ + 1. Then &,, acts on I™ by place
permutations.
For n € Z>o and § € QT such that |3| = n, we set

IP={w=,...,vn) €I |a,, +-+a, =8}.

Definition 2.1.1. For 8 € Q" with || = n, the KLR algebra R(3) at 3 associated
with a Cartan datum (A,P,IL, PV IIV) and a matriz (Qi;)i jer is the algebra over
k generated by the elements {e(v)},cre, {®k}t1<k<n, {Tm1<m<n—1 satisfying the
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following defining relations:
e()e(V') =d,ev), Y e(v)=1,
vels
TRy = TmT, Tre(v) = e(v)wy,
Tme(V) = €(Sm(ll))7'm, TkTm = TmTk Zf |k - m\ > 1,

Tlge(l/) = QV)kaJrl (xk’ 1'k+1)6(l/),

_e(y) ifm:kaykzyk+1a
(ThTm — Ts (myTe)e(V) = { e(v) ifm=Fk+1,v,=vgq,
0 otherwise,

(Th4 1Tk Tht+1 — TkTh+1Tk)E(V)

QVk;Vk+l (xk’ -Tk-i-l) - kaﬂ/k+1 ('T/H-?v xk-l-l) G(V)
= T — T2
0 otherwise.

if vy = Vpto,

The above relations are homogeneous provided that

dege(v) =0, deg zre(v) = (ay,,q,), deg me(v) = —(a,,ay,,)

and hence R(f) is a Z-graded algebra.
For a graded R(f)-module M = @, ., My, we define gM = P, (¢M), where

(qM)k =M, (k S Z)

We call ¢ the grading shift functor on the category of graded R(/3)-modules.

If M is an R(S)-module, then we set wt(M) = —f € Q and call it the weight
of M.

We denote by R(8)-Mod the category of R(f3)-modules, and by R(f)-mod the
full subcategory of R(5)-Mod consisting of modules M such that M are finite-
dimensional over k, and the actions of the x;’s on M are nilpotent.

Similarly, we denote by R(8)-gMod and by R(fS)-gmod the category of graded
R(p)-modules and the category of graded R()-modules which are finite-dimensional
over k, respectively. We set

R-gmod = @ R(f)-gmod and R-mod= & R(S)-mod.
BeQt peEQT
For 3,7y € Qt with || = m, || = n, set
e(8,7) = Y. e EREB+)
I/EIB+’Y,

(Vl 11111 Vm)elﬁv
(V415 sVman) €LY

Then e(S,) is an idempotent. Let
R(B) @ R(7) = e(B,7)R(B +7)e(B,7)

be the k-algebra homomorphism given by e(u) ®e(v) +— e(u * v) (u € I? and
veI el = xre(B,y) (1 <k <m), 1@z — xpre(B,y) (1 < k < n),
T ®1— me(B,7) (1 <k<m),and 1@ 7, — Tmire(B,7) (1 <k <n). Here pxv

is the concatenation of p and v; i.e., ppx v = ({1, .., fhm, V1y- -y Vn)-
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For an R(f)-module M and an R(~y)-module N, we define the convolution product
M o N by

MoN = R(B+7)e(B,7) R(,B)%)R(y)(M ®N).

For M € R(3)-mod, the dual space
M* := Homy (M, k)
admits an R(S)-module structure via

(r- f)(u):= f((r)u) (r e R(B), ue M),
where 1) denotes the k-algebra anti-involution on R(S3) which fixes the generators
e(v), Ty, and 7, for v € I,1 <m < |B], and 1 < k < |8].
It is known that (see [28, Theorem 2.2 (2)])
(M © My)* ~ ¢ (M; o MY)
for any My € R(8)-gmod and Ms € R(v)-gmod.

A simple module M in R-gmod is called self-dual if M* ~ M. Every simple
module is isomorphic to a grading shift of a self-dual simple module [2I], Section 3.2].
Note also that we have Endg(g) M ~ k for every simple module M in R(f3)-gmod
[21, Corollary 3.19].

Let us denote by K(R-gmod) the Grothendieck group of R-gmod. Then,
K(R-gmod) is an algebra over Z[g™!] with the multiplication induced by the con-
volution product and the Z[g™!]-action induced by the grading shift functor q.

In [211[38], it is shown that a KLR algebra categorifies the negative half of the
corresponding quantum group. More precisely, we have the following theorem.

Theorem 2.1.2 ([21L38]). For a given Cartan datum (A,P,IL, PV, I1V), we take
a parameter matriz (Qij)i jes satisfying the conditions in (Z1)), and let Uy(g) and
R(B) be the associated quantum group and the KLR algebras, respectively. Then
there exists a Z[g*!]-algebra isomorphism

(2.2) Uy (8)7)4+1) = K(R-gmod).

q

KLR algebras also categorify the upper global bases.

Definition 2.1.3. We say that a KLR algebra R is symmetric if Q; j(u,v) is a
polynomial in uw — v for alli,j € I.

In particular, the corresponding generalized Cartan matrix A is symmetric. In
symmetric case, we assume (a;, ;) =2 for i € I.

Theorem 2.1.4 ([39,40]). Assume that the KLR algebra R is symmetric and the
base field k is of characteristic 0. Then under the isomorphism (Z2)) in Theo-
rem 2.1.2], the upper global basis corresponds to the set of the isomorphism classes
of self-dual simple R-modules.

2.2. R-matrices for KLR algebras.
For |5 =n and 1 < a < n, we define ¢, € R(B) by

(Taa — TaTa)e(v) if vg = vgy1,
pae(v) =
Tae(V) otherwise.
They are called the intertwiners. Since {@q}1<q<n satisfies the braid relation,

Ow =®i, -+ p;, does not depend on the choice of reduced expression w = s;, - - - 5;,.
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For m,n € Z>¢, let us denote by w[m,n| the element of &,,,, defined by

k+n ifl1<k<m,
k—m Im<k<m+n.

wlm, n](k) = {

Let 8,7 € Qt with || = m, |y| = n, and let M be an R(f)-module and N an
R(7v)-module. Then the map M ® N — N o M given by u®v — Qyn,m)(v @ u)
is R(B) ® R(~)-linear, and hence it extends to an R(S + 7)-module homomorphism

Ryn:MoN —s No M.

Assume that the KLR algebra R(S) is symmetric. Let z be an indeterminate
which is homogeneous of degree 2, and let ¢, be the graded algebra homomorphism

¥z R(B) = klz] @ R(P)
given by
Ve(or) = xn+ 2, Ya(Th) =7k, Pz(e(v)) = e(v).
For an R(B)-module M, we denote by M. the (k[z]® R(8))-module k[z] ® M
with the action of R(f3) twisted by v,. Namely,

e(v)(a®@u) =a®e(v)u,

zp(a®@u) = (za) @u + a@(zru),

Tr(a®@u) = a®(1ru)
for v € I?, a € k[z], and u € M. Note that the multiplication by z on k|[z] induces
an R(f)-module endomorphism on M,. For u € M, we sometimes denote by u,

the corresponding element 1 ® u of the R(S)-module M,.
For a non-zero M € R(f)-mod and a non-zero N € R(y)-mod,

let s be the order of zero of Ry, y: M, o N — N o M,; i.e., the
(2.3) largest non-negative integer such that the image of Ry, n is contained
in 2°(N o M,).

Note that such an s exists because Ry, ny does not vanish [14] Proposition 1.4.4
(iii)]. We denote by R}  the morphism 27* R, N

Definition 2.2.1. Assume that R(B) is symmetric. For a non-zero M € R(f)-mod
and a non-zero N € R(v)-mod, let s be an integer as in (Z3). We define

N MoN = NoM

by
. ren |
Ty = A, N 12=0,

and call it the renormalized R-matrix.

By the definition, the renormalized R-matrix r,, ., never vanishes.
We define also
yiNoM — MoN
by
ryar = (2 Bxar) oo
where ¢ is the order of zero of Ry ..
If R(B) and R(vy) are symmetric, then s coincides with the order of zero of Ry, w .,

and (27 *Rar. v)|.=0 = ((—2) *Ra,n. )|2=0 (see [15, (1.11)]).
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By the construction, if the composition (Vg orMJ\b)O(rMJVl oNs) for M, N1, N» €

R-mod does not vanish, then it is equal to o NyoNy

Definition 2.2.2. A simple R(S)-module M is called real if M o M is simple.
The following lemma was used significantly in [I5].

Lemma 2.2.3 ([I5, Lemma 3.1]). Let 8 € Q* and My, € R(Bx)-mod (k = 1,2, 3).
Let X be an R(B1 + P2)-submodule of My o My andY an R(Ba + P3)-submodule of
Ms o M3 such that X o My C My oY as submodules of My o My o Ms. Then there
exists an R(B2)-submodule N of My such that X C My o N and No M3 CY.

One of the main results in [I5] is the following theorem.

Theorem 2.2.4 ([I5, Theorem 3.2]). Let 8,7 € QT and assume that R(3) is
symmetric. Let M be a real simple module in R(8)-mod and N a simple module in
R(v)-mod. Then

(i) Mo N and N o M have simple socles and simple heads.
(ii) Moreover, Im( is equal to the head of M o N and socle of N o M.

is equal to the head of N o M and socle of M o N.

IM,N)
Similarly, Tm(r, , )
We will use the following convention frequently.

Definition 2.2.5. For simple R-modules M and N, we denote by MV N the head
of Mo N and by M A N the socle of M o N.

3. SIMPLICITY OF HEADS AND SOCLES OF CONVOLUTION PRODUCTS

In this section, we assume that R(B) is symmetric for any g € QT; i.e., Q;;(u,v)
is a function in u — v for any 4,5 € I.

We also work always in the category of graded modules. For the sake of simplicity,
we simply say that M is an R-module instead of saying that M is a graded R(f)-
module for 8 € Q. We also sometimes ignore grading shifts if there is no danger
of confusion. Hence, for R-modules M and N, we sometimes say that f: M — N
is a homomorphism if f: ¢°M — N is a morphism in R-gmod for some a € Z. If
we want to emphasize that f: ¢°M — N is a morphism in R-gmod, we say so.

3.1. Homogeneous degrees of R-matrices.

Definition 3.1.1. For non-zero M, N € R-gmod, we denote by A(M,N) the ho-

mogeneous degree of the R-matrix LIVINE

Hence
Ry N i M,oN — ¢ *MNNoM, and

ry,y MoN— q_A(MJV)NoM

are morphisms in R-gMod and in R-gmod, respectively.

Lemma 3.1.2. For non-zero R-modules M and N, we have
A(M,N) = (wt(M),wt(N)) mod 2.

Proof. Set B := —wt(M) and v := —wt(N). By [14, (1.3.3)], the homogeneous
degree of Ryr, v is —(8,7) +2(8,Y)n, where (, »), is the symmetric bilinear form
on Q given by (o, a;)n = 0;;. Hence Ry N = 27 °Ry. N has degree —(8,7) +
2(57 ’7)n —2s. O
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Definition 3.1.3. For non-zero R-modules M and N, we set

1
A(M,N) := 5(A(M, N)+ (Wt(M),wt(N))) € Z.
Lemma 3.1.4. Let M and N be self-dual simple modules. If one of them is real,
then
qK(]\/LN)M v N
is a self-dual simple module.

Proof. Set = wt(M) and v = wt(N). Set M VN = ¢°L for some self-dual simple
module L and some ¢ € Z. Then we have

MoN — ¢°L — ¢ AMNIN o M,

since M VN =Imr, . Taking dual, we obtain

GrPMNABEN N o N = gL — ¢V N o M.

In particular, ¢~ ¢~ AMN) =B is a simple quotient of M o N. Hence we have
c=—c—A(M,N) - (8,7), which implies ¢ = —A(M, N). O
Lemma 3.1.5. (i) Let My, be non-zero modules (k = 1,2,3), and let 1 : L —

My o My and @3 : My o My — L' be non-zero homomorphisms. Assume
further that Ms is a simple module. Then the composition

LoM; 225 Ao My o My 22925 Mo L
does not vanish.
(ii) Let M be a simple module, and let N1, Ny be non-zero modules. Then the
composition

r]VI,Nl oNsy Njo r]VI,Ng

MoNioNy ———5 NioMo Ny NioNyo M

coincides with T NyoN,” and the composition

Nior r oNsy
Ny, M N1, M
NyoNgoM ——2" 3 NjoMo Ny —2"s Mo Ny o Ny

coincides with TN o Ny M

In particular, we have
A(M, Ny o Ny) = A(M, Ny) + A(M, Ns)
and
A(Ny o Noy M) = A(Ny, M) + A(Ny, M).

Proof. (i) Assume that the composition vanishes. Then we have Imy, o M3 C M; o
Ker ps. By Lemma 223 there is a submodule N of Ms such that Imepy C My o N
and NV o M3 C Ker ys. The first inclusion implies that N # 0 since ; is non-zero,
and the second implies N # Mj since @9 is non-zero. It contradicts the simplicity
of MQ.

(ii) It is enough to show that the compositions (N; o rM7N2) o (rMJV1 o Ny) and

(er,M o Ny)o(Ny Oer,M) do not vanish, but these immediately follow from (i). O
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3.2. Properties of A(M,N) and d(M, N).

Lemma 3.2.1. Let M and N be simple R-modules. Then we have

(1) A(M,N) +A(N7M) S 2220.
(i) If A(M,N)+ A(N, M) = 2m for some m € Z>, then

an © BNy, = 2" idyon,  and RNy, o Ry v = 2™ idaon
up to constant multiples.

Proof. By [14] Proposition 1.6.2], the morphism

I]‘\e]n]\/[ZORII‘\eJIZIN:MzON_)MzON

is equal to f(z)idason for some 0 # f(2) € k[z]. Since RN, o Ry} y is homoge-
neous of degree A(M, N)+ A(N, M), we have f(z) = czz (A0, N)+A(N. D)) for some
cek*. O

Definition 3.2.2. For non-zero modules M and N, we set

1

i(A(M,N) + A(N, M)).
Note that if M and N are simple modules, then we have d(M, N) € Z>(. Note

also that if M, N1, Ny are simple modules, then we have d(M, NyoNy) = (M, Ny)+

o(M, N3) by Lemma BT (ii).

b(M, N) =

Lemma 3.2.3 ([15]). Let M, N be simple modules and assume that one of them is
real. Then the following conditions are equivalent:

(i) (M, N) =0

(ii N and Ty 9Te inverse to each other up to a constant multiple.

) T
(iii) M o N and N o M are isomorphic up to a grading shift.
(iv) MV N and NV M are isomorphic up to a grading shift.
(v) Mo N is simple.
Proof. By specializing the equations in Lemma B2 (ii) at z = 0, we obtain that
(M, N) =0 if and only if Ty N Ot = idyoy and ry | or, o =idyon up to
non-zero constant multiples. Hence the conditions (i) and (ii) are equivalent.

The conditions (ii), (iii), (iv), and (v) are equivalent by [I5, Theorem 3.2, Propo-
sition 3.8, and Corollary 3.9]. O

Definition 3.2.4. Let M, N be simple modules.

(i) We say that M and N commute if d(M, N) = 0.
(ii) We say that M and N are simply linked if o(M, N) = 1.

Proposition 3.2.5. Let My, ..., M, be a commuting family of real simple modules.
Then the convolution product

M10-~-OMT

is a real simple module.
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Proof. We shall first show the simplicity of the convolutions. By induction on r,
we may assume that Ms o --- o M, is a simple module. Then we have

o(My, Myo---0 M) =Y o(My,M,) =0
s=2

so that M; o --- o M, is simple by Lemma [3.2.3
Since (Myo---o0M,)o (Myo---0M,) is also simple, My o---0 M, is real. O

Definition 3.2.6. Let My, ..., M,, be real simple modules. Assume that they com-
mute with each other. We set

My Q My := g MMy o M,
O My:=(-(MQOM) )OO Mpn-1)OMn

1<k<m
~ gZgi<ism K(Mi’MJ')Ml 0---0 Mp,.
It is invariant under the permutations of My, ..., M,,.
Lemma 3.2.7. Let My, ..., M, be real simple modules commuting with each other.

Then for any o € &,,, we have

® My~ © Ma(k) in R-gmod.

1<k<m 1<k<m

Moreover, if the My ’s are self-dual, then so is ©O1<k<m M.
Proof. 1t follows from Lemma B.1.4 and q’N\(M“MJ')MioMj ~ qK(MivMi)Mj oM;. O

Proposition 3.2.8. Let f: Ny — Ny be a morphism between non-zero R-modules
N1, Ny, and let M be a non-zero R-module.

(i) If A(M,Ny) = A(M, N3), then the following diagram is commutative:

MoN, — ™M NoM

Mofl lfoM
r

Mo Ny — ™ N, oM.

(ii) If A(M, N1) < A(M, N3), then the composition

r
MoN, M pronN, 220 Nyo M

vanishes.

(i) If A(M, N1) > A(M, Ns), then the composition

r
MoN, M Nom LY Nyo

vanishes.
(iv) If f is surjective, then we have

A(M,Ny) > A(M,N3) and A(Ny, M) > A(Ny, M).
If [ is injective, then we have

A(M,Ny) < A(M,N5) and A(Ny, M) < A(Ny, M).
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Proof. Let s; be the order of zero of Ras, n, for i = 1,2. Then we have A(M, N;) —
/\(]\47 NQ) = 2(82 — 81).
Set m :=min{sy, s2}. Then the following diagram is commutative:

—m
27" R, Ny

M, o N; NioM,

lfoMz
27" R, Ny

MzON2 NQOMZ.

o]

(i) If 81 = s9, then by specializing z = 0 in the above diagram, we obtain the
commutativity of the diagram in (i).
(ii) If s1 > s, then we have

—m S1—m —S
&M Ran, =27 (27 Raswy )
so that z=™Rpr. N, |2=0 vanishes. Hence we have

I‘M7N2 o (Mof) = Z_TnRMz,N2|Z:0 e} (Mof) = 07

as desired. In particular, f is not surjective.
(ili) Similarly, if s; < s2, then we have (fOM)orMJV1 =0, and f is not injective.
(iv) The statements for A(M, N1) and A(M, Ns) follow from (ii) and (iii). The
other statements can be shown in a similar way. ]

Proposition 3.2.9. Let M and N be simple modules. We assume that one of them
is real. Then we have

Homy_ 1, oq(MoN,NoM)= kry o

Proof. Since the other case can be proved similarly, we assume that M is real. Let
f: MoN — N oM be a morphism. Note that we have Ly ooy = Mor,, . and
Tor Nomt = TN oM by LemmalB.T5](ii) and by the fact that Ty = idpsoas up to
a constant multiple. Thus, by Proposition B.2.8] we have a commutative diagram
(up to a constant multiple)

Mor
MoMoN—" MoNoM

Mofl foMl
r oM
MoNoM—2Y  NoMol.

Hence we have

MolIm(r,, ) C f~'(Im(r,, ) o M.
Hence there exists a submodule K of N such that Im(rM N) CKoMand MoK C
f_l(Im(rM N)) by Lemma 223 Since K # 0, we have K = N. Hence f(MoN) C
Im(r , which means that f factors as MoN — soc(NoM) — NoM. It remains

M,N)
to remark that Hom M o N,soc(N o M)) =kr, . (]

R—mod(
Proposition 3.2.10. Let L, M, and N be simple modules. Then we have
AL, S) < AL,M)+ A(L,N), A(S,L) < A(M,L)+ A(N, L), and

(3:1) (S, L) < (M, L) +d(N, L)
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for any subquotient S of M o N. Moreover, when L is real, the following conditions
are equivalent:

(i) L commutes with M and N.
(ii) Any simple subquotient S of MoN commutes with L and satisfies A(L, S) =
AL,M)+ A(L,N).
(iii) Any simple subquotient S of Mo N commutes with L and satisfies A(S, L) =
AM,L)+ A(N,L).

Proof. The inequalities (B.I)) are consequences of Proposition B2.8l Let us show
the equivalence of (1)—(iii).

Let MoN =Ky D K1 D -+ D Ky D Kyy1 = 0 be a Jordan-Holder series
of M o N. Then the renormalized R-matrix Ry, n = (M o R ) o (R 0
N): L,oMoN — MoN oL, is homogeneous of degree A(L, M)+ A(L,N), and it
sends L, o Ky, to Ky o L, for any k € Z. Hence f:=r, , . = RijoN|Z:0 sends
Lo K} to Kio L. ’

First assume (i). Then f is an isomorphism. Hence f|rox,: L o Ky — Kj o
L is injective. By comparing their dimension, f|rox, is an isomorphism, Hence
flLo(ky /K1) IS an isomorphism of homogeneous degree A(L, M)+ A(L, N). Hence
we obtain (ii).

Conversely, assume (ii). Then, R,/ n|n.0(k, /Ky, and RYLC:K]C/KHI have
the same homogeneous degree, and hence they should coincide. It implies that
oo,/ Kni) = YL Ke/Kpa is an isomorphism for any k. Therefore f = (MorLﬁN)o
(er 4 © V) is an isomorphism, which implies that r, are isomorphisms.
Thus we obtain (i).

Similarly, (i) and (iii) are equivalent. O

and r

N M

Lemma 3.2.11. Let L, M, and N be simple modules. We assume that L is real
and commutes with M. Then the diagram

L,MoN

Lo(MoN) (MoN)olL
Lo(MVN) MY MV N)oL
commutes.
Proof. Otherwise the composition
LoMoNr NNMOLONWMONOL (MVN)olL
L,M° °Tr N

vanishes by Proposition [3.:2.8l Hence we have
MOIm(rLN) CKerf(MoN —- MV N)oL.
Hence, by Lemma 2.2.3] there exists a submodule K of N such that
Im(r, ) CKoLand MoK CKer(MoN — MV N).

The first inclusion implies K # 0 and the second implies K # N, which contradicts
the simplicity of N. O
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The following lemma can be proved similarly.

Lemma 3.2.12. Let L, M, and N be simple modules. We assume that L is real
and commutes with N. Then the diagram

r
(MoN)oL —2Mt 1o (MonN)

l YMVN,L l

(MVN)oL ————>Lo(MVN)
commutes.

The following proposition follows from Lemma [3.2.11] and Lemma

Proposition 3.2.13. Let L, M, and N be simple modules. Assume that L is real.
Then we have the following:

(i) If L and M commute, then
AL,MV N)=A(L,M)+ A(L,N).
(ii) If L and N commute, then
AMYV N,L)=A(M,L)+ A(N, L).
Proposition 3.2.14. Let M be a real simple module, and let N be a module with
a simple socle. If the following diagram

Tsoc(N),M
soc¢(N)o M ————— M osoc(N)

I N, M

NoM MoN

commutes up to a non-zero constant multiple, then soc (MO soc(N)) is equal to the
socle of M o N. In particular, M o N has a simple socle.

Proof. Let S be an arbitrary simple submodule of M o N. Then we have the
following commutative diagram:

RSoMz

SoM, M,oS

I Raon, M, I

MoNoM,————=MoMoN.

By multiplying 2=, where m is the order of zero of Rajon, ar, and specializing at
z =0, we have a commutative diagram (up to a constant multiple)

SoM MoS
I Mor I
MoNoM MM MoMoN.

Here, we use the fact that TVONM = (rM7M oN)o (MorMM) from Lemma [3.1.5]
and the fact that r, , is equal to idyjon up to a non-zero constant multiple,

because M is a real simple module.
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It follows that SoM C Mo(ry , )" (S). Hence there exists a submodule K of N
such that S € MoK and KoM C (ry ,,)”"(S) by LemmaR223l Hence K # 0 and

soc(N) C K by the assumption. Hence r,, , (soc(N)o M) C rNM(K oM) CS.

N,M
Since N, (soc(N) o M) is non-zero by the assumption, we have N} (SOC(N) o
M ) = 5. Thus we obtain the desired result. ]

The following is a dual form of the preceding proposition.

Proposition 3.2.15. Let M be a real simple module. Let N be a module with a
simple head. If the following diagram

MoN—N _Nowm

i "M, hd(N) i

Mohd(N) ————=hd(N)o M

commutes up to a non-zero constant multiple, then MV hd(N) is equal to the simple
head of M o N.

Proposition 3.2.16. Let L, M, and N be simple modules. We assume that L is
real and one of M and N is real.
(i) f M(L,MV N)=A(L,M)+ A(L,N), then Lo M o N has a simple head
and N o M o L has a simple socle.
(ii) If AAM V N,L) = A(M,L) 4+ A(N, L), then M o N o L has a simple head
and Lo N o M has a simple socle.
(iii) Ifo(L,M VN)=20L,M)+dL,N), then LoMoN and M o N o L have
simple heads, and N o M o L and L o N o M have simple socles.

Proof. (i) Denote k = A(L,M V N) = A(L,M) + A(M,N) and m = A(M,N).
Then the diagram

LoMoN EMON o kMoNoL
Lo(MVN)— MY k(M V N)oL
¢ mLoNoM—2NM_ —k-mN oMo

commutes. Hence Proposition 3:2.14] and Proposition imply that Lo M o N
has a simple head and N o M o L has a simple socle. Item (ii) is proved similarly.
(iii) f o(L, M V N) =o(L, M) +d(L, N), then we have A(L, M V N) = A(L, M) +
A(L,N) and A(M V N,L) = A(M, L) + A(N, L) by Proposition B:2.8 Thus the
statements in (iii) follow from (i) and (ii). O

Proposition 3.2.17. Let M and N be simple modules. Assume that one of them
is real and d(M,N) = 1. Then we have an exact sequence

0 >MAN-—>MoN—MVN —0.
In particular, M o N has length 2.
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Proof. In the course of the proof, we ignore the grading.

Set X = M,oN and Y = NoM,. By R, :Y — X let us regard Y as
a submodule of X. By the condition, we have Ri{"), o Ry’ v = zidx up to a
constant multiple (see Lemma B.271] (ii)), and hence we have

zXCY CX.
We have an exact sequence
0— Y — X — X —0
zX zX Y
Since
X X 271
MoN~— — ~NoM
CNEXTY T Ty o8

X
we have v = M V N by Proposition 3291 Similarly,

Y Y X
NoM=—3 = —— 5 =MoN

implies that % ~ M A N by Proposition |
Lemma 3.2.18. Let M and N be simple modules. Assume that one of them is
real. If there is an exact sequence
0—-¢g"X —MoN—q"Y —0
for self-dual simple modules X, Y and integers m, n, then we have
o(M,N)=m —n.

Proof. We may assume that M and NV are self-dual without loss of generality. Then
we have n = —A(M, N). Since

"X ~ PANMN Y M~ qA(N,M)—K(N,M) (qK(N,M)N v M),

we have m = A(N, M) — A(N, M). Thus we obtain
m —n=A(N,M)—A(N, M)+ A(M,N) =o(M,N).
O

Lemma 3.2.19. Let M and N be simple modules. Assume that one of them is
real. If the equation

[M][N] = ¢"[X] +q"[Y]

holds in K (R-gmod) for self-dual simple modules X, Y and integers m, n such that
m > n, then we have

(i) d(M,N)=m—n >0,
(ii) there exists an exact sequence

0—q¢"X —>MoN—q¢q"Y — 0,

(iii) ¢™X is the socle of M o N and q"Y is the head of M o N.
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Proof. First note that 2(M, N) > 0 since M o N is not simple. By the assumption,
there exists either an exact sequence

0—q¢"X —MoN—q"Y — 0,

or
0—q¢"Y — MoN —¢"X — 0.
The second sequence cannot exist by Lemma B2 18 because 2(M, N) = n—m < 0.

Hence the first sequence exists, and the assertion (iii) follows from Theorem 224
O

Proposition 3.2.20. Let X,Y, M, and N be simple R-modules. Assume that there
is an exact sequence

0>X—>MoN—-Y —0,

XoN andY o N are simple, and X o N Y o N are ungraded modules. Then N
is a real simple module.

Proof. Assume that IV is not real. Then IV o N is reducible, and we have r . #

cidyoy for any ¢ € k by [I5] Corollary 3.3]. Note that No N is of length 2, because
M o N o N is of length 2.

Let S be a simple submodule of N o N. Consider an exact sequence
00— XoN—MoNoN—YoN —0.
Then we have
(3.2) (XoN)N(MoS)=0.

Indeed, if (X o N) C (M o S), then there exists a submodule Z of N such that
X CMoZand ZoN C S by [15, Lemma 3.1]. It contradicts the simplicity of N.
Thus (32) holds.
Note that (3.2]) implies
MoS~YoN

since Y o N is simple.

(a) Assume first that N o N is semisimple so that N o N = S ¢ S’ for some
simple submodule S’ of No N. Then M oS ~Y oN ~ Mo S’ Hence Mo S ~
X oN ~ Mo S’ Therefore we obtain X o N ~Y o N, which is a contradiction.

(b) Assume that N o N is not semisimple so that S is a unique non-zero proper
submodule of N o N and (N o N)/S is a unique non-zero proper quotient of N o
N. Without loss of generality, we may assume that k is algebraically closed [21],
Corollary 3.19]. Let = € k be an eigenvalue of Since r ¢ kidyon, we

'n N NN
have 0 C Im(r,, \, — zidyon) & NV o N. It follows that

S =1Im(ry \ —zidyon) ~ (N o N)/S,
and hence we have an exact sequence
00— MoS— MoNoN— Mo ((NoN)/S) — 0.
Since M o N o N is of length 2, we have
XoN~MoS~Mo((NoN)/S)~YoN,

which is a contradiction. O
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Corollary 3.2.21. Let X,Y, N be simple R-modules, and let M be a real simple
R-module. If we have an exact sequence

0—>X—>MoN—=Y —0
and if X o N and'Y o N are simple, then N is a real simple module.

Proof. Since M is real and M o N is not simple, X is not isomorphic to Y as an
ungraded module by Lemma B.2.3] (iv). It follows that X o N is not isomorphic to
Y o N, because K(R-gmod) is a domain so that [X o N| = ¢™[Y o N] for some
m € Z implies [X] = ¢™[Y]. Now the assertion follows from Proposition 322201 O

Lemma 3.2.22. Let {M;}<i<n and {N;}1<i<n be a pair of commuting families
of real simple modules. We assume that

(a) {M; V N;}i<i<n is a commuting family of real simple modules,

(b) M; V N; commutes with N; for any 1 <i,j <mn.

Then we have
(01<icnM;) V (01<j<nNj) = 01<i<n(M; V N;)  up to a grading shift.

Proof. Since 01<j<n(M; V N;) is simple, it is enough to give an epimorphism
(olgiSnMi) o (O1§j§an) —» Olgign(Mi v Nl) We shall show it by induction
on n. For n > 0, we have

(01<i<nM;i) 0 (01<j<nNNj) = (01<i<n—1M;) © My © Ny 0 (01<j<pn—1Nj)

— (O1<i<n—1M;) 0 (M, V Ny,) © (01<j<n—1Nj)

~ (01<i<n—1M;) 0 (01<j<n—1N;) © (M, V Ny)

- (Olgign—l(Mi \Y N’L)) o (Mn \Y Nn)v
as desired. O

4. LECLERC’S CONJECTURE

In this section, R is assumed to be a symmetric KLR algebra over a base field k.

4.1. Leclerc’s conjecture. The following theorem is a part of Leclerc’s conjecture
stated in the Introduction.

Theorem 4.1.1. Let M and N be simple modules. We assume that M 1is real.
Then we have the equalities in the Grothendieck group K(R-gmod) as follows:

(i) [MoN]=[MYV NJ+ 3, [
with simple modules Sy, such that A(M, Sx) < A(M,M ¥V N) = A(M,N),
(i) [MoN]=[MAN]+3,[Sk
with simple modules Sy, such that A(Sk, M) < A(M AN,M)=A(N,M),
(ili) [NoM] =[NV M|+ >[5
with simple modules Sy such that A(Sk, M) < A(NV M, M) = A(N,M),
(iv) [NoM]=[NAM]+>,[Sk
with simple modules Sy such that A(M,Sy) < A(M,N A M) =A(M,N).
In particular, MV N as well as M A N appears only once in the Jordan—Hdlder
series of M o N in R-mod.

The following result is an immediate consequence of this theorem.
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Corollary 4.1.2. Let M and N be simple modules. We assume that one of them
is real. Assume that M and N do not commute, Then we have the equality in the
Grothendieck group K (R-gmod)

[MoN]=[MVN]+[MAN]+> [Sk
k

with simple modules Sy,. Moreover we have the following:
(i) If M is real, then we have A(M,M A N) < A(M,N), A(MV N,M) <
A(N, M) and A(M, S) < A(M,N), A(Sk, M) < A(N,M).
(ii) If N is real, then we have A(N,M V N) < A(N,M), A(M A N,N) <
A(M,N) and A(N,Sx) < A(N,M), A(Sg,N) < A(M,N).

Proof of Theorem Il We shall prove only (i). The other statements are proved
similarly.

MON:KojKlD"'DKgDK(+1:0.
Then we have Ko/K; ~ M V N. Let us consider the renormalized R-matrix
R von = (Mo R?\(Z,N) ° (RRZZ,M oN)

ren ren
RMZ,MON Mo M, ,N

MoM,oN———=MoNoM,.

M,oMoN

Then RY7 1/on sends M, o Ky to Ky o M, for any k. Hence evaluating the above
diagram at z = 0, we obtain

Mor
MoMoN —2Y MoNoM

] J

Mo K, KioM.

Since Im(r,, : Mo N — No M)~ (Mo N)/K;, we have r,, . (K1) = 0. Hence,
Ry aon sends M, o Ky to (KioM,)N z((M oN)o Mz) = z(K; o M,). Thus
2 R aon Mok, is well defined. Then it sends M o K}, to Kj o M, for k > 1.
Thus we obtain an R-matrix

ZRYE on | Mao(iy )t Mz © (Ki/Kisr) = (K /Kjee1) o M, for 1< k< /.

Hence we have

ren _ .,—Sk .,—1pren
Mo Ky K = 2 7 BN Mon MoK/ Kisr)

for some s € Z>o. Since the homogeneous degree of Ry 5/ is A(M,M o N) =
A(M, N), we obtain

AM, Ky /K1) = AM,N) —2(1 + s) < A(M, N).
|
Recall that the isomorphism classes of self-dual simple modules in R-gmod are

parametrized by the crystal basis B(co) [28]. The following theorem is an applica-
tion of the above theorem.
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Theorem 4.1.3. Let ¢ be an element of the Grothendieck group K(R-gmod)

given by
o= Y alLy,

beB(0)

where Ly is the self-dual simple module corresponding to b € B(oo) and ap € Z[g™].
Let A be a real simple module in R-gmod. Assume that we have an equality

o[A] = ¢'[Alg

in K(R-gmod) for somel € Z. Then A commutes with Ly, and
I=A(A, L)

for every b € B(co) such that ay, # 0.

Proof. Note that we have

= Zab[Lb o A} = Zab([Lb v A} + Z[Sb,k}) and
b b k

¢[Alp = ¢ Z ap[A o Ly = ¢ Z ap (gAML, V A + Z[Sb’k]),
b b 2

for some simple modules Sy, ; and S®* satisfying
A(Spr, A) < A(Ly, A) and  A(S™*, A) < A(Ly, A)

by Theorem LTl
We may assume that {b € B(co) | ap # 0} # 0. Set

t:=max {A(Ly, A) | ap # 0} .

By taking the classes of self-dual simple modules S with A(S, A) = ¢ in the expan-
sions of ¢[A] and ¢'[A]¢, we obtain

Z ab[Lb \Y A] = Z qlaqu(Lb’A) [Lb \% A]
A(Ly,A)=t A(Ly,A)=t

In particular, we have t = —I.
Set

t':=max {A(A, L) | ap # 0} .

Then, by a similar argument we have ¢’ = [.
It follows that

0 =1+ > ALy, A) + A(A, Ly) > 0

for every b such that ap # 0. Hence A and L; commute.
Since

Zab AL Ao L) = Zab [Ly 0 A] = ¢[A] = [A]gb:quab[AoLb],
we have
=A(A, L)
for any b such that ap # 0, as desired. O
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Corollary 4.1.4. Let M and N be simple modules. Assume that one of them is
real. If [M] and [N] g-commute (i.e., [M][N] = ¢q"[N][M] for some n € Z), then
M and N commute. In particular, M o N 1is simple.

The following corollary is an immediate consequence of the corollary above and

Theorem 214
Corollary 4.1.5. Assume that the generalized Cartan matriz A is symmetric and
that by, by € B(00) satisfy the following conditions:

(i) one of GUP(by)? and GUP(bg)? is a member of the upper global basis up to

a power of q,

(ii) G"P(by) and G"P(be) g-commute.
Then their product G"P(by)G"P(ba) is a member of the upper global basis of Uy (g)
up to a power of q.

4.2. Geometric results. The result of this subsection (Theorem [L2ZT]) was ex-
plained to us by Peter McNamara. It will be used in the proof of the crucial result
Theorem D0.3Tl In this subsection, we assume further that the base field k is of
characteristic 0.

Theorem 4.2.1 ([34] Lemma 7.5]). Assume that the base field k is of characteristic
0. Assume that M € R-gmod has a head ¢°H with a self-dual simple module H
and ¢ € Z. Then we have the equality in the Grothendieck group K (R-gmod)

[M] = ¢°“[H] + > ¢ [Si]
k

with self-dual simple modules Sy, and c > c.
By duality, we obtain the following corollary.

Corollary 4.2.2. Assume that the base field k is a field of characteristic 0. Assume
that M € R-gmod has a socle ¢°S with a self-dual simple module S and ¢ € Z. Then
we have the equality in K(R-gmod)

[M] = ¢°[S]+ > q°*[Sk]
k

with self-dual simple modules Sy and ¢, < c.
Applying this theorem to convolution products, we obtain the following corollary.

Corollary 4.2.3. Assume that the base field k is of characteristic 0. Let M and N
be simple modules. We assume that one of them is real. Then we have the equalities
in K(R-gmod) as follows:
(i) [MoN]=[MV N+ >, ¢Sk
with self-dual simple modules Sy, and
cx > —A(M,N) = (=A(M,N) — (wt(M), wt(N)) /2.

(i) [MoN]=[MAN]+3%, ¢Sk
with self-dual simple modules Sy, and ¢, < (A(N, M) — (wt(N), wt(M)))/2.

Note that ¢*M-N) M V N is self-dual by Lemma [3.1.4l

Theorem [ZT.1] and Theorem 2] solve affirmatively Conjecture 1 of Leclerc
[29] in the symmetric generalized Cartan matrix case, as stated in the Introduc-
tion. More precisely, let R be a symmetric KLR algebra over a base field k of
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characteristic 0, and let M and N be simple modules over R. Assume further that
M is real. Then by Theorem BT M V N and M A N appear exactly once in a
Jordan—Holder series of M o N. Write M VN = ¢™H and M A N = ¢°S for some
self-dual simple modules H, S, and m, s € Z. By Theorem .21l we have

[M o NJ=g™[H]+¢°[S]+ > _ ¢*[Sk],
k

where S, are self-dual simple modules, and m < ¢ < s for all k. Collecting the
terms, we obtain

[MoN]=g"[H]+¢[S]+ Y min(@lL,
L#H,S
with
(@) € 4" Z[g N ¢ Z[g Y,
which proves Leclerc’s first conjecture via Theorem 21,41

We obtain the following result which is a generalization of Lemma B.2.T8] in the
characteristic-zero case.

Corollary 4.2.4. Assume that the base field k is of characteristic 0. Let M and
N be simple modules. We assume that one of them is real. Write

Mo N =3 ¢ [Si]
k=1

with self-dual simple modules Sy, and cy, € Z. Then we have
max{ck |1 <k <n}—min{c; |1 <k <n}=9M,N).

4.3. Proof of Theorem [M.2.1] Recall that the graded algebra R(3) (8 € Q%)
is geometrically realized as follows [40]. There exist a reductive group G and a
G-equivariant projective morphism f: X — Y from a smooth algebraic G-variety
X to an affine G-variety Y defined over the complex number field C such that

R(B) ~ EndD%(ky)(Rf*(kX [dim X])) as a graded k-algebra.

Here, D‘é(ky) denotes the G- equivariant derived category of the G-variety Y with
coefficient k, and Enthé(ky)(K) = Hompy, (., (K, K) with
Homeé(ky) (K, K/) = @Z HomD%(ky) (K, K/[TL])
ne

We denote by kx[dim X] the direct sum of the constant sheaves on each connected
component of X, all of which are shifted by their dimensions. By the decomposition
theorem [I], we have a decomposition

Rfi(kx[dim X]) ~ P E,® Fa,
acJ

where {F,}ac is a finite family of simple perverse sheaves on Y and E, is a non-
zero finite-dimensional graded k-vector space such that

(4.1) HY(E,)~ H*(E,) forany k € Z.

The last fact (@) follows from the hard Lefschetz theorem [IJ.
Set Agp = Hong(ky)(fb, Fa). Then we have the multiplication morphisms

Aa,b & Ab,c — Aa,c
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so that
A= 69 Aa,b
a,beJ
has a structure of Z-graded algebra such that
ASO = @ An = AO ~ k‘].
n<0
Hence the family of the isomorphism classes of simple objects (up to a grading
shift) in A-gmod is {k,}.cs. Here, k, is the module obtained by the algebra
homomorphism A — A<p ~ k’ — k, where the last arrow is the ath projection.
Hence we have
K(A-gmod) ~ @ Z[g*][k,].
acJ
On the other hand, we have

R(B)~ P F.®@A.p,@FE;.

a,beJ
Set
L:= @ E, ®Aa,b-
abeJ
Then, L is endowed with a natural structure of ( @ E, ® A, ® E;f, A)-bimodule.

a,beJ
It is well known that the functor M — L ® 4 M gives a graded Morita-equivalence

®: A-gmod == R(S)-gmod.

Note that ®(k,) ~ E, and {E,}.cs is the set of isomorphism classes of self-dual
simple graded R(f)-modules by (@.1]).

By the above observation, in order to prove the theorem, it is enough to show
the corresponding statement for the graded ring A, which is obvious.

5. QUANTUM CLUSTER ALGEBRAS

In this section we recall the definition of skew-symmetric quantum cluster alge-
bras following [3] and [I1], Section 8§].

5.1. Quantum seeds. Fix a finite index set J = Jox Ll Jr; with the decomposition
into the set Jex of exchangeable indices and the set Ji of frozen indices. Let
L = (\ij)ijes be a skew-symmetric integer-valued J x J-matrix.

Definition 5.1.1. We define 2(L) as the Z|g*'/?]-algebra generated by a family
of elements {X;}ics with the defining relations

X X; =X, X; (i,j €J).
We denote by % (L) the skew field of fractions of Z?(L).

For a = (a;)ics € Z”7, we define the element X? of .Z (L) as
_%
X2 .— q1/2 Zi>j a;aj\i; X%
ieJ !

p— , ‘
Here we take a total order < on the set J and [[, ;X" = Xfl” -+« X" where
J ={i1,...,4} with iy < --- < i,.. Note that X® does not depend on the choice of

a total order of J.
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We have
(5.1) xaxb — q1/2 Sijes @ibjAi; xath

If a € ZZ,, then X belongs to Z(L).
It is well known that {X®},czs is a basis of #(L) as a Z[g*'/?]-module.

Let A be a Z[g*'/?]-algebra. We say that a family {z;};cs of elements of A
is L-commuting if it satisfies z;2; = ¢*vz;z; for any i,j € J. In such a case
we can define 2 for any a € ZZ,. We say that an L-commuting family {;}ics
is algebraically independent if the algebra map (L) — A given by X; — x; is
injective.

Let B = (bij)(i,j)esxt., be an integer-valued J X Jo-matrix. We assume that
the principal part B := (b;;)i jeJ., of B is skew-symmetric.

To the matrix B we can associate the quiver Q5 without loops, 2-cycles, and
arrows between frozen vertices such that its vertices are labeled by J and the arrows
are given by
(5.2)

b;; = (the number of arrows from i to j) — (the number of arrows from j to 7).

Here we extend the J x Jo-matrix B to the skew-symmetric J x J-matrix B =
(bij)i,jes by setting b;; = 0 for i, j € Jg.

Conversely, whenever we have a quiver with vertices labeled by J and without
loops, 2-cycles, and arrows between frozen vertices, we can associate a J X Jex-

matrix B by (£2).
We say that the pair (L, B) is compatible if there exists a positive integer d such

that

(53) Z)\ikbkj = (52]d (Z S J, j S Jex)~
keJ

Let (L, f?) be a compatible pair and A a Z[g*'/?]-algebra. We say that . =
({:}ics, L, B) is a quantum seed in A if {x;};c is an algebraically independent
L-commuting family of elements of A.

The set {z;}ics is called the cluster of . and its elements the cluster variables.
The cluster variables x; (i € Ji,) are called the frozen variables. The elements 2
(a € ZZ,) are called the quantum cluster monomials.

5.2. Mutation. For k € Jex, we define a J x J-matrix £ = (e;5);jes and a
Jox X Jox-matrix F' = (fi;)i jes.. as follows:

€ij = -1 ifi:j:k, fij: -1 ifiZjZk',
max (0, —by) ifi#j=k, max(0,by;) ifi =k #j.

The mutation pu,(L, B) := (ug(L), px(B)) of a compatible pair (L, B) in direction k
is given by
pe(L):=(ETYLE,  un(B):=EBF.

Then the pair (ug(L), ux(B)) is also compatible with the same integer d as in the
case of (L, B) [3].
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Note that for each k € Joy, we have

~ —by; ifi=korj=k
5.4 B);j = / ’
(5:4) 1By {bij + (=1)9Cir<Omax(b;by;,0) otherwise,
and
0 ifi=y
—Akj Y max(0, —bu) Ay ifi=k, j#k,
L) = teJ
e (L —)\zk—l—Zmax —by)Aie ifi#£k, j=k,
teJ
Aij otherwise.

Note also that we have

Zmax _btk: it — Zmax 0 btk))\zt
teJ teJ
for i € J with i # k, since (L, B) is compatible.
We define

655 L[ iti=k o, [ ifi=k,
! max(0, b;) if i # k, ! max(0, —b;) if i #k,

and set a’ := (a});es and a” := (af )iey.
Let A be a Z[g*'/?]-algebra contained in a skew field K. Let . = ({x;}ics, L, B)
be a quantum seed in A. Define the elements py(z); of K by

’ " .
@+, ifi=k,

(5.6) k()i = {x ik

Then {ug(x);} is an algebraically independent py(L)-commuting family in K. We
call

k(7 = (Lo (@)iYiess (L), 1k (B))

the mutation of . in direction k. It becomes a new quantum seed in K.

Definition 5.2.1. Let . = ({xi}iGJ,L,E) be a quantum seed in A. The quan-
tum cluster algebra @,1/2(.%) associated to the quantum seed .7 is the Z[g*'/?]-
subalgebra of the skew field K generated by all the quantum cluster variables in the
quantum seeds obtained from & by any sequence of mutations.

We call . the initial quantum seed of the quantum cluster algebra &7/ (.%).

6. MONOIDAL CATEGORIFICATION OF CLUSTER ALGEBRAS

Throughout this section, fix J = Jex U Jg and a base field k.

Let C be a k-linear abelian monoidal category. For the definition of monoidal
category, see, for example, [I4, Appendix A.1]. Note that in [I4], it was called
the tensor category. A k-linear abelian monoidal category is a k-linear monoidal
category such that it is abelian and the tensor functor ® is k-bilinear and exact.
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We assume further the following conditions on C:

(i) Any object of C has a finite length,
(6.1) (ii) k == Hom¢ (S, S) for any simple object S of C.

A simple object M in C is called real if M ® M is simple.

6.1. Ungraded cases.

Definition 6.1.1. Let . = ({M;}ics, B) be a pair of a family {M;}ic; of sim-
ple objects in C and an integer-valued J X Jox-matrizc B = (bij) (i jyesx .., whose
principal part is skew-symmetric. We call . a monoidal seed in C if

(i) M; ® M; ~ M; @ M; for anyi,j € J,
(i) @ MP“ is simple for any (a;)ics € ZL,.
ieJ -
Definition 6.1.2. For k € Jo, we say that a monoidal seed ¥ = ({Ml}ze],g)
admits a mutation in direction k if there exists a simple object M € C such that

(i) there exist exact sequences in C,

0 @ M »MyoM,— @ MJ™" o,

bir>0 bir <0
0= @ METH) L MloM,—» @ M2 —0;
bir <0 bir>0

(ii) the pair pp() == ({M;}izr U{M]}, pii(B)) is a monoidal seed in C.

Recall that a cluster algebra A with an initial seed ({z;}ics,B) is the
Z-subalgebra of Q(z;|i € J) generated by all the cluster variables in the seeds
obtained from ({z;}ics, B) by any sequence of mutations. Here, the mutation zj,
of a cluster variable x (k € Jox) is given by

I O | P

/
T, =
k Tk )

and the mutation of B is given in (5.4).

Definition 6.1.3. A k-linear abelian monoidal category C satisfying ([G.1)) is called
a monoidal categorification of a cluster algebra A if

(i) the Grothendieck ring K (C) is isomorphic to A,

(ii) there exists a monoidal seed ¥ = ({M;}ics,B) in C such that

[] = ({[MZ]}ZGJ,E) is the initial seed of A and . admits successive
mutations in all directions.

Note that if C is a monoidal categorification of A, then every seed in A is of the
form ({[M;]}ics, B) for some monoidal seed ({M;}ics, B) in C. In particular, all
the cluster monomials in A are the classes of real simple objects in C.

6.2. Graded cases. Let Q be a free abelian group equipped with a symmetric
bilinear form

(,):QxQ—7Z such that (8,8) € 2Z for all 5 € Q.
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We consider a k-linear abelian monoidal category C satisfying ([6.1]) and the follow-
ing conditions:

(i) We have a direct sum decomposition C = € Cgs such that
BEQ
the tensor product ® sends Cg xC to Cg1~ for every 8,y €

Q.
(ii) There exists an object @ € Cy satisfying
(a) there is an isomorphism

Ro(X): QX 5X®Q

(6.2) functorial in X € C such that
Ro(X®Y)

RQRIXRY

X)X®Q®Y XY e

Ra(
commutes for any X,Y € C;
(b) the functor X — Q®X is an equivalence of categories.
(iii) for any M, N € C, we have Hom¢(M,Q®" @ N) = 0 ex-
cept finitely many integers n.

R (Y)

We denote by ¢ the auto-equivalence Q ® « of C, and call it the grading shift
functor.
In such a case the Grothendieck group K(C) is a Q-graded Z[g*!]-algebra:
K(C)= @ K(C)g where K(C)s = K(Cg). Moreover, we have
BeQ

K(C) = @Z[qil][s],

where S ranges over equivalence classes of simple modules. Here, two simple mod-
ules S and S are equivalent if ¢g"S ~ S’ for some n € Z.

For M € Cg, we sometimes write § = wt(M) and call it the weight of M.
Similarly, for = € Q(q'/?) ®zq+1) K(Cp), we write f = wt(x) and call it the weight
of x.

Definition 6.2.1. We call a quadruple ¥ = ({Mi}ie],L,é,D) a quantum
monoidal seed in C if it satisfies the following conditions:

(i) B= (bij)icJ, jee. 18 an integer-valued J X Jex-matriz whose principal part
is skew-symmetric,

L = (Xij)ijes is an integer-valued skew-symmetric J x J-matriz,

D = {d;}icy is a family of elements in Q,

v) {M;}ics is a family of simple objects such that M; € Cq, for any i € J,
(vi) M;, ® ---® M;, is simple for any sequence (i1,...,i;) in J,
(vil) The pair (L, B) is compatible in the sense of (B3) with d = 2,

)\ij — (di,dj) € 27 for alli,5 € J,
D bied; =0 for all k € Jux.

icJ

)
)
)
V) MZ®MJ ~ q)\iij ®MIL fOT‘ all Z,j S J,
)
)
)
)
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Let . = ({M;}ies, L, E, D) be a quantum monoidal seed. For any X € Cg and
Y € C, such that X ® Y ~ ¢°Y ® X and ¢+ (8,7) € 2Z, we set

AX,Y) = %(—c—k (8,7) €Z
and
XOV = X oy ~ Ay g X,
Then X ®Y ~Y ® X. For any sequence (i1,...,i¢) in J, we define
SéMis = (M, © Miy) © My, ) -+ ) © M,
Then we have
é M;, = q% Yicucoce(TAinin i, &) A oL@ M

K78
s=1

For any w € S, we have
J J
@ Miw(s) = @ Mis'
s=1 s=1

Hence for any subset A of J and any set of non-negative integers {mg }qca, we can

define ) Mo™a.
acA
For (a;)ies € Zéo and (b;)iey € Zém we have

(QMP™) O(Q M) = @ M.
ieJ ieJ icJ

Let . = ({M;}ics,L,B,D) be a quantum monoidal seed. ~When the
L-commuting family {[M;]}ic; of elements of Z[g*'/?] ®z,+1) K (C) is algebraically
independent, we shall define a quantum seed [.#] in Z[g*'/2] ®p(,+1] K(C) by

1] = (g~ [Mi]}ies, L, B).

Set

X, = q*(di,di)/ﬂMi].
Then for any a = (a;)ies € Zém we have
X2 = g B[O MPw,
icr
where p = wt(© M%) = wt(X?) = 3, aid;.
icJ
For a given k € Jey, we define the mutation ux(D) € Q7 of D in direction k with
respect to B by
pe(D)i =d; (i £ k), pi(D)y = —d+ Y bid.
bix>0
Note that
pur(pr (D)) = D.

Note also that (ux(L), ux(B), ux(D)) satisfies conditions (viii) and (ix) in Defini-
tion for any k € Jox.
We have the following lemma.
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Lemma 6.2.2. Set X; = pp(X)k, the mutation of Xy as in ([5.6). Set ( =
wt(X}) = —di + 32, o bikdi- Then we have

Mg X = © M+ © M,

bir>0 bk <0
¢ O] = [ © M +ql © M),
bix>0 bk <0
where
1
mg = 5 dka Z )\kz ik
(6.3) X <0
m;c = 5 dka Z )\k’L ik -
bik >0

Proof. By (&), we have
Xp X2 = g7 Zies @M X2 for a = (a;);ey € Z7 and (eg); = 6i (i € J).
Let &’ and a” be as in (B.3)). Because

Z ik — Z a; \gi = Z bikAki — Z bik) ki = Z bikAki = 2,

i€J i€J b;>0 b <0 i€J

we have
X, X), = X
Note that wt(Xext2’

x? + Xa”) = q% 35 ai Ak (quk+a’ + Xek‘f’a,/).
wt(Xe<2") = d, + ¢. Tt follows that

3 () + (6 0) = 5 3 i+ (¢ i+ )

ieJ
= dk> Z bik Ai-

bir<0

—~

mg =

»P|>—‘\_/

One can calculate mj, in a similar way. O

Definition 6.2.3. We say that a quantum monoidal seed . = ({M;}ics, L, B, D)
admits a mutation in direction k € Joy if there exists a simple object M, € C,,, (p),
such that

(1) there exist exact sequences in C,

(6-4) 0—q O M g™ Mo M~ O M o,
bir>0 bik <0
6.5 0—q MPTP g M @ My, — M 0,
% k i
bir <0 bir >0

where my, and m}, are as in ([63).

(i) k() = ({M; i U ML}, (L), 1x(B), px(D)) is @ quantum monoidal
seed in C.

We call pp(#) the mutation of . in direction k.
By Lemma [6.2.2] the following lemma is obvious.

Lemma 6.2.4. Let .7 = ({M;};cs, L, B,D) be a quantum monoidal seed which
admits a mutation in direction k € Jor. Then we have

[Nk(y)] = Mk([y])-
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Definition 6.2.5. Assume that a k-linear abelian monoidal category C satisfies
©J) and [©2). The category C is called a monoidal categorification of a quantum
cluster algebra A over Z[g*'/?] if

(i) the Grothendieck ring Z[g*'/?] ®z,+1) K (C) is isomorphic to A4,
(i) there exists a quantum monoidal seed . = ({M;}ics, L, B, D) in C such
that [.%7] := ({¢~ @ 4)/4[M,]}sc s, L, B) is a quantum seed of A,
(iii) .~ admits successive mutations in all the directions.

Note that if C is a monoidal categorification of a quantum cluster algebra A,
then any quantum seed in A obtained by a sequence of mutations from the initial
quantum seed is of the form ({g~(%-4)/4[M;]}ic s, L, B) for some quantum monoidal
seed ({M,;}ics, L, B, D). In particular, all the quantum cluster monomials in A are
the classes of real simple objects in C up to a power of ¢'/2.

7. MONOIDAL CATEGORIFICATION VIA MODULES OVER KLR ALGEBRAS

7.1. Admissible pair. In this section, we assume that R is a symmetric KLR
algebra over a base field k.

From now on, we focus on the case when C is a full subcategory of R-gmod stable
under taking convolution products, subquotients, extensions, and grading shift. In
particular, we have

C= @ Cs, whereCs:=CnN R(—pF)-gmod,
BEQ™

and we have the grading shift functor ¢ on C. Hence we have
K(Cs) Uy (9)s

and K (C) has a Z[g*!]-basis consisting of the isomorphism classes of self-dual simple
modules.

Definition 7.1.1. A pair ({M;}ics, B) is called admissible if
(i) {M;}ics is a family of real simple self-dual objects of C which commute with
each other,
(ii) B is an integer-valued J X Jox-matriz with a skew-symmetric principal part,
(iii) for each k € Jox, there exists a self-dual simple object Mj, of C such that
there is an exact sequence in C

(7.1) 05q O MY — AMMONL oM O MU 0,
b >0 bir <0

and M, commutes with M; for any i # k.

Note that Mj, is uniquely determined by k and ({M;}ic, B). Indeed, it follows

from ¢ MeMON, YV M{ ~ O M?(fb““) and [15, Corollary 3.7]. Note also that
bk <0
if there is an epimorphism ¢™ My o M, - (© MZQ(_b““) for some m € Z, then m
bik<0

should coincide with A(Mj, M) by Lemma B4l and Lemma B2Z7

For an admissible pair ({M;}ics, B), let A = (A;;)i jes be the skew-symmetric
matrix given by A;; = A(M;, M;). and let D = {d;};cs be the family of elements
of Q™ given by d; = wt(M;).



388 S.-J. KANG, M. KASHIWARA, M. KIM, AND S.-J. OH

Now we can simplify the conditions in Definition [6.2.1] and Definition [6.2.3] as
follows.

Proposition 7.1.2. Let ({M;}ic s, B) be an admissible pair in C, and let M (ke
Jex) be as in Definition [Tl Then we have the following properties:

(a) The quadruple . := ({M;}ics, —A, B, D) is a quantum monoidal seed in C.
(b) The self-dual simple object Mj, is real for every k € Jox.

(¢) The quantum monoidal seed .# admits a mutation in each direction k € Jex.
(d; My, and Mj, are simply linked for any k € Jox (i.e., (Mg, M) =1).

(e) For any j € J and k € Jox, we have
A(M;, My) = —A(Mj, My) =32, <o MM, M;i)big,
A(My, M) = —A(Mj, M) + 32, <0 MM, M;)big.

(7.2)

Proof. Ttem (d) follows from the exact sequence (Z.I)) and Lemma B.2.18
Item () follows from the exact sequence (1)) by applying Corollary B.2Z.21] to
the case

M=M, N=M, X=q¢ @ M, andY = O M ""*.
bir>0 bir <0

Item (@) follows from

A(Mj7Mk) +A(MJ7M;€) = A(MjaMk VMI/g) _ A(Mj, 0 M?(_blk))

bk <0
> AM —bir,)

bik <0

and

A(My, My) + A(Mj, M) = A(M}, V My, M;) = A( @ MP"*, M;)
bir>0

bix>0

Let us show (@). The conditions (i)—(v) in Definition are satisfied by the
construction. The condition (vi) follows from Proposition and the fact that
M; is real simple for every ¢ € J. The condition (viii) is nothing but Lemma
The condition (ix) follows easily from the fact that the weights of the first and the
last terms in the exact sequence (L)) coincide.

Let us show the condition (vii) in Definition 21 By (72) and (d) of this
proposition, we have

281, = 20(Mj, M) = —20(M;, Mi) — > A(M;, Mi)bi + > A(M;, M;)b
bk <0 bix>0
3 A M~ 3 A, Mba = <37 AM;. Mo
bir <0 bir>0 ieJ

for k € Jex and j € J. Thus we have shown that .¥ is a quantum monoidal seed

in C.
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Let us show (@). Let k € Jex. The exact sequence (6.4) follows from (Z1]) and
the equality

(73) K(M/ﬁMllﬁ) = ((Wt MkaMk Z A Mka 7, ) = Mg,

bir<0

N =

which is an immediate consequence of (2.
Similarly, taking the dual of the exact sequence (.I]), we obtain an exact se-
quence

—b; _A ’ ’ _ .
0 @ Mi@( k)_>q A(Mk,Mk)+(thk,thk)M]/€oMk_>q 1 O ]\/[l_<am_>()7
bir <0 b >0

which gives the exact sequence (G3).

It remains to prove that i, (%) := ({M;}izr U {M}, px(=A), px(B), (D)) is
a quantum monoidal seed in C for any k € Jo.

We see easily that ug () satisfies the conditions (i)—(iv) and (vii)—(ix) in Defi-
nition

For the condition (v), it is enough to show that for i, j € J we have

e (=A)ij = —A(pr (M), pre (M) ),
where pp(M); = M; for i # k and pp (M), = Mj.. In the case i # k and j # k, we
have
p(=A)ij = =AMy, My) = = A (M), pur (M)

The other cases follow from ([72)).
The condition (vi) in Definition for p () follows from Proposition
and the fact that {ug(M);}ics is a commuting family of real simple modules. O

Now we are ready to give one of our main theorems.
Theorem 7.1.3. Let ({M;};cs, B) be an admissible pair in C and set
S = ({Mi}i€J7 _Aa B’ D)

as in Proposition T2 We set [#]:= ({qg~ 3 VMD)W [M}ie 5, —A, B, D). We
assume further that

(7.4) The Q(q*/?)-algebra Q(q'/?) ® K(C) is isomorphic to
Z[g=1]
1/2 ® a.2([S]).
W) & ()

Then, for each x € Jox, the pair ({/,Lw(M)Z‘}ieJ,lu/x(é)) is admissible in C.

Proof. In Proposition ([B), we have already shown that the condition (i) in
Definition [T.T] holds for ({p(M);}ies, pz(B)). The condition (ii) is clear from
the definition. Let us show (iii). Set N; := p,(M); and b;; := . (B);; for i € J and
j € Jox. It is enough to show that, for any y € Joy, there exists a self-dual simple
module M?’J’ € C such that there is a short exact sequence
(7.5)

0——gq @ N by —>q7\(N’y>M;/)Ny o M{/ - @ Ni@(_biy)
b;, >0 bj, <0

—>0
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and
O(Ni, M) =0 fori#y.

If z =y, then b’iy = —biz, and hence M, = M, satisfies the desired condition.

Assume that z # y and by, = 0. Then b}, = b;, for any i and N; = M; for any
i # x. Hence M, = p, (M), satisfies the desired condition.

We will show the assertion in the case by, > 0. We omit the proof of the case
bzy < 0 because it can be shown in a similar way.

Recall that we have

(76) b;y _ bzy + bmbxy lf bix > O,
for i € J different from z and y.
Set

My = piy (M), Mg// 1= py (M)y,

— Obix — O—bia
Ci= QO M=, S= (@O M b=
biz>0 bix <0, iy
. ob; . o-b}
P= O M™ Q= (O M ",
biy>0,iFfx b;, <0, iz
Obiz by ©—b;
A= O MUV ©) M
b, <0, biz>0 biy <0, b}, >0, biz>0

~ ©min(bizbey,—biy)
- O M’L )
biy <0, bin>0

._ Obixbay Ob,
B= O MPebtvg O M,
biy >0, bix>0 by, >0, biy <0, biz >0

Then using (7Z.6]) repeatedly, we have

QOA~ @ MP™", A®B~C®v, and BOP~0 O M.
biy <0 b}, >0

Set
L= (M), V=M,
and set

Xi=Q M~ MOPvOP=VOP, Yi=0 M """ ~Q0A.
biy>0 biy <0

Then (7.6]) is read as
77) 0—>g(BOP) — = AMeMO N o MV o [0Q — 0.
Y Y
Note that we have

. —q —>q~ =M M o — v S =0,
7.8 0= qC — ¢* MMM o M, — MY &S — 0
(7.9) 0= gX — "M pp oM} =Y —0.
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Taking the convolution products of L = (M/)®%=v and (Z.9), we obtain

0 —>qLoX —¢"MM) o (M, 0M) LoY 0,

0 —>g¢X o L — ¢"MM) (M, o M) o L YolL 0.
Since L commutes with M,, we have
A(L,Y) = A(L, M, V M,)
= AL, M) + A(L, M) = A(L, M o M,).
On the other hand, we have
A(M;, X) = MM, Y)
=AM, © M)~ A, © M)

biy>0 biy<0
= > AM, My)by — Y A(M, M;)(=biy)
biy>0 bLy<0
= Z A(Mg/c, M;)biy = Z A(Ma/cv M;)biy + A(Ma/cv M;)bgy
ieJ i#T
- ZA(M;, M;) (b, — 8(biz > 0)bigbay) + A(M,,, My )by,
i#x
=AM, MYy, — > A(M], M;)bigbyy + MM}, M;)by,
1#x biz>0
=0-AM;, © M )byy + A(My, My)by,
(a) biw>0
= (AM, © M) 4+ (M}, M,))bsy
biz>0

(=AM, My) = A(My, My) + A(My, My))bsy = 0.

Note that we used the compatibility of the pair ((—A(ue(M;), pa(M;))), e 1z (B))

when we derive the equality (a).
Since L = (M!)®%v the equality A(M., X) = A(M.,Y) implies

AL, X)=A(L,Y) = AL, M, o M,).
Hence the following diagram is commutative by Proposition B2.8] (i):
0——qLoX — MM o (Myo M) ——>LoY —0
‘(”L,X lrL,MyOM; LY |0
00— "X o L — ¢ MMM (M, 0 M) 0 L—— ¢ Y 0 L —0,

where d = —A(L,X) = —A(L,M, o M;) = —A(L,Y). Note that since L =

(M!)®b=v commutes with @ and A is an isomorphism. Hence we have

»Try

Tm( ~LoY.

rL,Y)



392 S.-J. KANG, M. KASHIWARA, M. KIM, AND S.-J. OH

Therefore we obtain an exact sequence

(7.10) 0—— Im(rLX) — Im(rL’MyoM;) LoY 0.
On the other hand, T, oM decomposes (up to a grading shift) by Lemma B3T3l
as follows:
L, M, oM
! ~ ! !/
Lo M,oM, oM My o LoM, Moorg ar M, o My o L.

Since L = (M.)®%v commutes with M, the homomorphisms r

;.
]
LM, My is an

isomorphism, and hence we have

Im(r )~ M, o (LV M,) up toa grading shift.

L,MyoM;

Similarly, r, . decomposes (up to a grading shift) as follows:

'LX
LoVoP VoLoP——= sVoPolL.
rL,VOP VOI‘L,P

Since L commutes with P, the homomorphism V or is an isomorphism, and

L.P
hence we have

Im(r, )~ (LVV)oP~ (M) ¥ MJ%v) o P up to a grading shift.
On the other hand, Lemma implies that
(M)Pbav 7 MOV ~ (M V M) ~ C%w ~ BO A,
and hence we obtain

Im(r

1 x) = (BOP)©A up to a grading shift.

Thus the exact sequence ([ZI0) becomes the exact sequence in C,

(7.11)0 —= ¢"(BOP) @A ——> "M, 0o (LV M) —= (LOQ) ® A —=0

for some m,n € Z. Since (L ©Q)® A is self-dual, n = A(M,, L V M). On the
other hand, by Proposition B:2Z13] (i) and Proposition (), we have

d(M,, L'V M) <o(My, L) +(M,, M,) = 1.
By the exact sequence (ZI1l), M, o (L'V M,) is not simple, and we conclude
o(M,, LV M) = 1.
Then Lemma 3218 implies that m = 1. Thus we obtain an exact sequence in C,
(7.12) 0 — q(BOP) ©® A — Mo LYMD A o (LV M) — (LOQ) ® A — 0.
Now we shall rewrite (T.12)) by using « o A instead of « ©® A. We have
A(B, A) + (A, A) = byy A(C, A) = by A(M, V M, A)
= byy A(M!, A) + byy A(M,, A) = A(L, A) + byyA(M,, A).
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On the other hand, the exact sequence (Z9]) gives
by A(M,, A) + A(P, A) = A(X, A) = A(M], V M,, A)
= A(M], A) + A(My, A) = A(M, V M), A) = A(Y, A)
= A(Q, A) + A4, A).
It follows that
A(BoP,A) =A(B,A) + A(P, A)
= (A(L, A) + by A(M,, A) — A(A, A))
+(A(Q, A) + A(A, 4) = by A(My, A))
=A(L,A)+MQ,A) = AN(LoQ, A).
Hence we have
0—=¢q(BOP)oA——=q°Myo(LVM)) —= (LOQ)oA—=0,
where ¢ = A(M,, L'V M) — A(B® P, A) by Lemma T4
Thus we obtain the identity in K (R-gmod),
q°[M,][LV M} = (q[BOP] + [LOQ])[A].

On the other hand, the hypothesis ([4) implies that there exists
¢ € Q(q"?) @zp421) K(C) corresponding to i, ([M]) so that it satisfies

(7.13) [Myl¢p =q[BOP]+[LOQ]
and
(7.14) Bl (M);] = i e (M)i)¢p for i # y,

where pypz(—A) = (X ) Jed-
Hence, in Q(¢'/?) ®z(4+1] K(C), we have
| =

[My)9[A] = (q[B© P+ [L©Q))[A] = ¢°[M,][L'V M,].
Since Q(q'/?) ®z[q+1) K(C) is a domain, we conclude that
¢[A] = ¢°[L V My).
On the other hand, (ZI4) implies
#[A] = ¢'[A]¢ for some | € Z.

Hence, Theorem [£.1.3] implies that, when we write
o= Z ap|Ly)]  for some a, € Q(¢/?),
beB(c0)
we have
LyoA~ qlA oL, whenever ay # 0.

In particular, each module L, o A with a; # 0 is simple because A is a real simple
module. Thus we obtain

LV M) =¢[A] = > Lo Al

beB(c0)
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Since L V Mz/; is simple, there exists by such that L;, o A is isomorphic to L V Mé
up to a grading shift, and a; = 0 for b # by. Set M,/ := Ly,. Then we conclude
that ¢[A] = ¢ [M,/ o A] = ¢™[M,/][A] so that

¢ =q"[M,]] for some m € Z.

We emphasize that M "’ is a self-dual simple module in R-gmod which satisfies that
M oA~LV M, up to a grading shift.

Now T13) 1mphes
q"[My o M} =q[BOP|+[LOQ]
Hence there exists an exact sequence
0— W —q¢" MyoM,) — Z —0,

where W = ¢gBOP and Z = LOQ or W = LOQ and Z = ¢BOP. By
Lemma [3.2.18] the second case does not occur, and we have an exact sequence

0—¢BOP—q" MyoM; — LOQ — 0.

Since M, M,/, and L ® Q are self-dual, we have m = A( y> M), and we obtain
the desired short exact sequence (7).

Since ¢ commutes with [u, (M);] up to a power of ¢ in K(C), and p,,(M); is real
simple, M, commutes with ji,(M); for i # y, by Corollary LTl O

Corollary 7.1.4. Let ({M;}ics, B) be an admissible pair in C. Under the as-
sumption (4, C is a monoidal categorification of the quantum cluster algebra
A 2([L]). Furthermore, the following statements hold:

(i) The quantum monoidal seed . = ({M;}ics, —A, B, D) admits successive
mutations in all directions.

(ii) Any cluster monomial in Zg*'/?] ®zpq+1] K (C) is the isomorphism class of
a real simple object in C up to a power of ¢*/?.

(iii) Any cluster monomial in Z[q='/?] ®zq+1) K(C) is a Laurent polynomial of

the initial cluster variables with a coefficient in Zso[qt'/?].

Proof. Ttems (i) and (ii) are straightforward.
Let us show (iii). Let « be a cluster monomial. By the Laurent phenomenon [3],

we can write
g caX?,
J
anZo

where X = (X;);cs is the initial cluster, ¢ € ZZ,, and c, € Q(¢*'/?). Since z
and X© are the isomorphism classes of simple modules up to a power of ¢'/2, their
product £ X°¢ can be written as a linear combination of the isomorphism classes of
simple modules with coefficients in Zzo[qil/ 2]. Since every X? is the isomorphism

12 we have ¢, € Zxo[qT'/?]. O

class of a simple module up to a power of ¢

8. QUANTUM COORDINATE RINGS AND MODIFIED QUANTIZED
ENVELOPING ALGEBRAS

8.1. Quantum coordinate ring. Let U,(g)* be Homg,)(Uy(g), Q(g)). Then the
comultiplication A (see (L.IJ)) induces the multlphcatlon pon Ugy(g)* as follows:

12 Uy(9)* @ Uy(8)" — (Uy(s) ®Uy(g))” —=22 U, (9)*.
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Later on, it will be convenient to use Sweedler’s notation A (z) = 2 (1) ® (2. With
this notation,

(f9)(2) = f(z)) 9(z2) for f.g € Uy(g)" and € Uy(g).

The U,(g)-bimodule structure on U,(g) induces a U,(g)-bimodule structure on
Uy (g)*. Namely,

(@ f)(v) = flve) and (f-2)(v) = f(av) for f € Uy(g)" and z,v € Uy(g).

Then the multiplication g is a morphism of a U,(g)-bimodule, where
Uy(9)* @ Uy(g)* has the structure of a U,(g)-bimodule via Ay . That is, for f,g €
Uy(9)* and z,y € U,(g), we have

z(f9)y = (1) fyn)(@@2)9Y2)),

where Ay (2) = 2(1) @ 2(2) and Ay (y) = ya) @ Y(2)-
Definition 8.1.1. We define the quantum coordinate ring A,(g) as follows:
Ay(g) ={ueUy(g)" | Uy(g)u belongs to Oini(g) and ulUy(g) belongs to Of,(9)}-

int
Then, A,(g) is a subring of U,(g)* because (i) w is Uy (g)-bilinear, and (i) Oin(g)

and O}, (g) are closed under the tensor product.

We have the weight decomposition A4(g) = @ Aq(g)n,c, where
n,¢EP

Ag(@)nc =1 € Ag(0) | ¢" -0 " = "0y for by, h, € PYY,
For ¢ € Ay(9)n,c, we write
whi() =n and = wt.(¢) =
For any V € Oin(g), we have the U,(g)-bilinear homomorphism
Py: Va(DyV)" — Aq(g)
given by
Py (v@Y)(a) = (¥ av) = (¥ a,v) forveV, ¢ € D,V and a € Uy(g).

Proposition 8.1.2 ([I7, Proposition 7.2.2]). We have an isomorphism ® of Uy(g)-
bimodules

(8.1) P D V() @ VIO Ay(g)
AeP+ Q(q)

given by @y (x Do VI = Px =Py (). Namely,

P(u@v’)(z) = (v',zu) = (V'z,u) = (v,2u) for any v,u € V(X) and x € Uy(g).

We introduce the crystal basis (L"P(A,(g)), B(44(g))) of A4(g) as the images
by ® of

@ L™\ @ L™\ and | | B(\) @B\
Aept Aep+

Hence it is a crystal base with respect to the left action of U,(g) and also the right
action of Uy(g). We sometimes write by e} and f;* the operators of A,(g) obtained

by the right actions of e; and f;.
We define the Z[g*!]-form of A,(g) by

Aq(g)z[qil] = {1/’ € Aq(g) | (¥, Uq(g)Z[qi1]> C Z[qil]} .



396 S.-J. KANG, M. KASHIWARA, M. KIM, AND S.-J. OH

We define the bar-involution — of A,(g) by
U(z) =) for ¢ € Ay(g), z € Uy(g).
Note that the bar-involution is not a ring homomorphism but it satisfies
P 0 = g wh@))=(we ()Wt () G for any 1, 6 € Ay(g).

Since we do not use this formula and it is proved similarly to Proposition [R.1.4]
below, we omit its proof.

The triple (Q® Ag(g)ziq21), L' (Aq(g)), L™ (Ay(g))) is balanced [I7, Theorem
1], and hence there exists an upper global basis of 4,(g),

B (A4(g)) :={G"(b) | b € B (A4(g))}-

For A € P* and p € WA, we denote by u, the unique member of the upper
global basis of V(A) with weight p. It is also a member of the lower global basis.

Proposition 8.1.3. Let A € P*, w € W, and b € B(\). Then, ®(G"*(b) @u? ;)
is a member of the upper global basis of A4(g).

Proof. The element ¢ := ®(G"P(b) ® u},,) is bar-invariant and a member of crystal
basis modulo gL"P(A4(g)). For any P € Uy(g)zq+1

<¢7P> = (uw)nPGup(b))

belongs to Z[g*!] because PGP (b) € V™P(A)z(q1] and uyy € V' (A)z(q1). Hence
1 belongs to A,(g)z[4+1)- O

The Q(g)-algebra anti-automorphism ¢ of Uy(g) induces a Q(g)-linear automor-
phism ¢* of A,(g) by

(¢*¢) () = ¢(p(x)) for any z € Uy(g).
We have
o~ (@(u@vr)) =d(v®u'),
and

wii(p*) = wte(¢)  and - wt(9™Y) = whi ().
It is obvious that ¢* preserves Ay(g)z(g=1], L' (A4(g)), and B"P(Ay(g)).

Proposition 8.1.4.
©* (1) = gVt )W) =(whi (W) wh(0)) (%) (o*6).

In order to prove this proposition, we prepare a sublemma.
Let ¢ be the Q(g)-algebra automorphism of Uy(g) given by

&ei) = q; 'ties, §(fi) = qifit; ' &(q") = 4"
We can easily see

(€@€)0A, =A o,
Let &* be the automorphism of A,(g) given by

(€ P) () = 9(&(x)) for ¢ € Ay(g) and z € Uy(g)-

Sublemma 8.1.5. We have
&) = qA(th(w),Wtr(w))w,

where A\ i) = 3 ((1,12) ~ (0 X)).
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Proof. Let us show that, for each x, the following equality,

(8.2) P(E(x)) = gAMWWy (),

holds for any .
The equality ([82) is obviously true for z = ¢". If (82 is true for x, then

() (xe;) = ¥ (E(wes)) = ¥ (E(x)eiti)qi
= qlenwa)F @)/ 2y, (1) e;)

— q(ai,th("b))+(ai’ai)/2 (5* (61'1/))) (z)
(e w12 () (00,002 AW (06) o W () (00 ().

=4q
Since [|A + a;]|2 = [|A|? + 2(i, A) + |la||?, B2) holds for we;. Similarly if (B2
holds for x, then it holds for z f;. ]

Proof of Proposition BT.4. We have
(pop)oA_=A o0

Hence, we have

(0" (40), z) = (¥0, o(x))
<7»/1®9 Ay (p()))
= (W®0,(p@yp)oA_(z))
= (" (V) @¢"(0), A_(2)).
It follows that
(€ (" (00)),z) = (" (¥0),&(x)) = (" (¥) @™ (0), A (§(x)))
= (¢ () @™ (0), (@ &) 0 Ayx)
= (" () £ " (0), Ayx)
= (€ (@) (€7¢"(9)),2)
=q A(wty <w> w1 (¥))+A(wtr (), wh) 9))<(¢ V) (p70), ).

Therefore we obtain
" (¥0) = ¢°(¢™Y) (¢*0)
with
¢ = A(wt: (), whi(¥)) + A(wtr(0), wti ()
— AWt () + wte (0), whi (1) + wti(6))
= (Wt (), wte(0)) — (whi(), wti(6)). O

8.2. Unipotent quantum coordinate ring. Let us endow U;‘ (9) @ U, (g) with
the algebra structure defined by

(21 @ @) - (11 ®y2) = ¢~ VW) (21, @ o).
Let A, be the algebra homomorphism U (g) — U, (g) @ U (g) given by
An(ei) = €; ®]. —+ 1 ®€i.

Set

Ay(n) = D Ag(n)s  where Ay(n)5:= (Uy (8)-5)"-
BEQ™
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Defining the bilinear form (-, - ): (A,(n) ® A4(n)) x (U (9) @ U, (9)) — Q(q)
by
(Y ©0,z0y) =0(x)y(y),

we get an algebra structure on A,(n) given by

(Y- 0)(z) = (Y0, An(z)) = (2 1))V (2(2)),

where An(l‘) = (1) ®I(2)
Since U (g) has a U, (g)-bimodule structure, so does Ay (n).
We define the Z[g*!]-form of A,(n) by

Ag()zggn = {¥ € An) | (U, (9)z421)) C Zlg™']},

and define the bar-involution — on A,(n) by

¥(z) = (T) for ¢ € Ay(n) and z € U/ (9).
Note that the bar-involution is not a ring homomorphism but it satisfies
P 0 = gt O) g for any 1, 0 € Ag(n).

For i € I, we denote by e the right action of e; on A,4(n).
Lemma 8.2.1. For u,v € A,(n), we have g-boson relations

ei(uv) = (esu)v + ¢Vt y(ev) and e (uv) = u(ev) + ¢V (efu)w.
Proof.

(e;(uv), x) = (uv, xe;) = (U, Ap(ze;)).
If we set Apz = (1) ® x(2), then we have
An(zei) = (20) ®1(2) (€ @ 1H1 @ €5) = ¢~ @D (@) e0) @ 2 (2) Fa 1) D (2(2)0)-
Hence, we have
(w@v, An(ze)) = ¢~ @O u(zg) v(znye) + ulz@e)o(z)
= ¢ Du(a)) - (ev)(x)) + (eu) (2 () - vz )
= (¢l )y @(e;v) + (eiu) @ v, Apt).

The second identity follows in a similar way. (Il

We define the map ¢: U, (g) — Ag(n) by

(v(u),z) = (u, o(x)) for any u € U, (g) and = € U/ (g).

Since ( , ) is a non-degenerate bilinear form on U, (g), ¢ is injective. The relation

(t(eju), z) = (eju, o(2)) = (u, fip(x)) = (u, p(xe;)) = (u(u), vei) = (eir(w), z)
implies that

v(eju) = e;(u).

Lemma 8.2.2. ¢ is an algebra isomorphism.

Proof. The map ¢ is an algebra homomorphism because e} and e; both satisfy the
same g-boson relation. (Il
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Hence, the algebra A,(n) has an upper crystal basis (L"?(A44(n)), B(A4(n))) such

that B(A4(n)) ~ B(oo). Furthermore, A,(n) has an upper global basis
B"(A,(n)) = {G"(b)} veB(a,m)

induced by the balanced triple (Q ® Aq () 7421, L' (Aq(n)), Wq(n))) (see (T3)).

There exists an injective map

Ix: B(A) = B()
induced by the U} (g)-linear homomorphism ¢ : V/(A) = Ay(n) given by
vi— (U (g) 2 a— (av,uy)).
The map 7, commutes with €;. We have
GYY(b) = GV (1x(b))uy and \GYP(b) = GP(1A(b)) for any b € B(\).

Remark 8.2.3. Note that the multiplication on A4(n) given in [II] is different
from ours. Indeed, by denoting the product of ¢ and ¢ in [11} Section 4.2] by - ¢,
for 2 € Uf(g), we have

(- ¢)(x) = ¥(@M)p(z?),
where Ay (z) = 2W¢"0 @ 2@ ¢"@ for 2 2@ € UF(g), ha1),he) € PY. By
Lemma [R.5.3] below, we have
W-)x) =gV DI (22))) 6 (1))
= ¢ O (24))d(x (1)) = ¢V () ()

for x € U(;r(g)7 where Ay(x) = 2(1) ® 2(2). In particular, we have a Q(q)-algebra
isomorphism from (A,(n),-) to A4(n) given by

(8.3) v q 2Py forze Ay(n)g.

Note also that the bar-involution — is a ring anti-isomorphism between A,(n) and
(Aq (n)7 )

8.3. Modified quantum enveloping algebra. For the materials in this subsec-
tion we refer the reader to [19,32]. We denote by Mod(g, P) the category of left
Uy(g)-modules with the weight space decomposition. Let (forget) be the functor
from Mod(g, P) to the category of vector spaces over Q(g), forgetting the U,(g)-
module structure.

Let us denote by % the endomorphism ring of (forget). Note that # contains
Uy(g). For n € P, let a,, € Z denote the projector M — M,, to the weight space of
weight 7. Then the defining relation of a,, (as a left U,(g)-module) is

qhan — q<h’”>a,}
We have

anac =0y cay, ayP = Pa,_¢ for{ e Qand P e Uy(g)e.

Then Z is isomorphic to H Uq(9)a,. We set
neb

U,(g) == @ U,(g)a, C Z.

nepP
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Then ﬁq(g) is a subalgebra of Z. We call it the modified quantum enveloping

algebra. Note that any U,(g)-module in Mod(g, P) has a natural ﬁq(g)—module
structure. N
The (anti-)automorphisms *, ¢, and ~ of U,(g) extend to the ones of Uj(g) by

ap =a_y, @lay) =a,, ay=a,.

For a dominant integral weight A € PT, let us denote by V()) (resp. V(=\)) the
irreducible module with highest (resp. lowest) weight A (resp. —A). Let uy (resp.
u_y) be the highest (resp. lowest) weight vector.

For A€ PT, € P~ := —P™, we set

V(A p)=VQA)@_V(y).
Then V (A, p) is generated by uy ®_u, as a Uy(g)-module, and the defining relation
of uy ®_uy, is

<h,A+u>(

qh(u)\ &_ uu) =dq Uy @_ uu)a

L= (his) (ur ®_ u,) =0, fil-Hh’“’\> (ux®_u,) =0.

€

Let us define the Q-linear automorphism ~ of V/(A, 1) by
Pluy®_u,) = Pluy ®_ Up).
We set
(i) L'O"(\, p) := LIV (X) @4, L (1),

(i) VO mzige =V (Vs @zgen V(a1
(i) B = BO)® Bl

Proposition 8.3.1 ([32]). (L'Y(\, u), B(A, 1)) is a lower crystal basis of V (A, ).
Furthermore, (Q@V()\,/},)Z[qil], LY (X, 1), LIOW()\,M)) 18 balanced, and there ex-
ists a lower global basis BY(V(\,pn)) obtained from the lower crystal basis

(L'¥(X, 1), B(A, ).

Theorem 8.3.2 ([32]). The algebra Uy(g) has a lower crystal basis
(LIOW(U (g)),B(Uq(g))) satisfying the following properties:

() L (Ty(o)) = @ 1™ (Uy(a)ar) and B(T,(9)) = Lep BT (o)), where

)=
LIOVNV(Uq(Q) ) LIOW(U( )) N Uq(g)ax and
* B(U(g)ax) = B(Uy(g)) N (LY (Uy(g )a/\)/quiw(Uq( g)ax)).
(ii) Set Uy(@)ziq+1) = @ Uqg(9)z1q1)0n. Then (Q® Uy(g)zq+ Llow(Uq(E)),

Llow(ﬁq(g))) 18 balanced, and Uq( ) has the lower global basis Blow(ﬁq(g)):z
{G"™(0) | b € B(Uy(9))}-
(iii) For any A € PT and p € P~, let

LW Uq(g)akﬂt = V(A p)

be the U,(g)-linear map axt, — ux @ u,. Then we have

U (L(ﬁq (9)ar+p)) = LY(\, ).
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(iv) Let Wy, be the induced homomorphism

LY (Uy(g)ar+u) /al' (Ug(@)arsu) — L' (A ) /aL'*" (A, ).

Then we have o
(a) {b € B(Uy(g)ar+y) | Uaub# 0} — B(A\, ),
(b) Wa (G (1) = G (T (b)) Jor any b € BT, (a)ans).
(v) B(Uq(9)) has a structure of crystal such that the injective map induced by

(iv) (a) i i

B\, p) — B(Uq(g)a)Hru) C B(Uy(9))
is a strict embedding of crystals for any X € P* and p € P~

For )\ € P, take any ¢ € P™ and n € P~ such that A = ( + 7. Then B(¢) ® B(n)

is embedded into B(U,(g)ay).
For pn € P, let T, = {t,,} be the crystal with

Wt(t#) = H, Ei(t#) = Sﬁi(tu) = —0Q, éi(tu) = fi(t#) =0.
Since we have
B(¢) = B(o0) @1, B(n) = T,, @ B(—00), and Te @ T;) =~ Ty,

B(¢) ® B(n) is embedded into the crystal B(oo) @ T\ ® B(—o0). Taking ¢ — oo
and n — —o0, we have

Lemma 8.3.3 ([19]). For any A € P, we have a canonical crystal isomorphism
B(Uy(g)ax) ~ B(co) ® Ty @ B(—00).
Hence we identify

B(Uy(g)) = | | B(oo) @ Ty ® B(—o0).
AP
For £ € Q_ and n € Q4, we shall denote by
Uy (9)>¢:= D Uy (@es Uy (9)<n = S> U (@)-
£€Q-N(E+Q4)\{¢} 7' €Q+N(n+Q-)\{n}
Then for any A € P, b_ € B(0)¢, and by € B(—00),, we have
(8.4) G (b @1y @by) — GO (b )G™(byJax € Uy (9)5eU; (8)<nin
[19, (3.1.1)]. In particular, we have
G (hoo @ty @by ) = G(by)ay and GPV(b_ @ty @b_o) = GV(b_)ay.
Theorem 8.3.4 ([19]).

(i) LY (U,(g)) is invariant under the anti-automorphisms * and .
(i) B(Uy(9))” = ¢(B(Uq(9))) = B(Uy(a))- ~
(iii) (G'™(b)) =G ™(b) and o(G'" (b)) = G'™(p(b)) for b€ B(Uy(g)).
Corollary 8.3.5 ([19]). For by € B(c0), by € B(—0), we have
(1) (1 @ty ®@b2)* = b7 @t wi(by)—wi(bs) @ V5.
(2) (b1 @1, @ba) = @(ba) @, wi(by)+wi(by) @ P(b1).
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We define, for b € B with B = B(U,(g)), B(c0), or B(—00),
gi (b) = &i(b%), 97 (b) = i (b%), wt™(b) = wt(b"),
£1(b) = &(b")", and Fr(6) = Fi(b)"

This defines another crystal structure on ﬁq(g): For by € B(o0), by € B(—0),
and 7 € P, we have

g; (b1 ®t,; ®ba) = max(ej (b1), ¢; (b2) + (hi,m)),
@i (b1 @ty ®ba) = max(e; (b1) — (hi,n), 5 (b2)),
=¢; (b1 ®t,; ®ba) + (hi, wt* (b1 @ t,, @ b2)),
wt (b1 ®t, @ba) = —n,

exb tr—o, @b if *(by) > o*(b h:
ér(b1®tn®b2): (61 1)®7] ai? 2 1 61( 1)—<P1( 2)+<’La77>7

b1 @ty—a, @(€5b2)  if €f(b1) < ¢f(ba) + (hi,m),
. F501) @ tyra, @by if €¥(by) > (b hi,n),
Pty @by) = (fib) @ty L~f©2 ?51( 1) @i( 2) + (hism)

b1 ®tn+o¢i ®(fz 62) if g; (bl) < ©; (bZ) + <hia77>

In particular, we have
Giop=ypoff and fiop=gpoé&l foreveryiecl.
8.4. Relationship of A,4(g) and ﬁq(g). There exists a canonical pairing A,(g) x
Uq(g) — Q(q) by
(U, za,) = 0w () (z)  for any o € Ay(g), x € Uy(g), and p € P.
Theorem 8.4.1 ([19]). There exists a bi-crystal embedding

tg: B(Aq(9)) — B(Uy(9))

which satisfies

(G (b), (G (V) = 07,000

for any b € B(A,(g)) and b’ € B(Uy(g)).
8.5. Relationship of A4,(g) and A,(n).

Definition 8.5.1. Let pn: A, (g) — Ay(n) be the homomorphism induced by
Uy (9) = Uy(),

(Pa(¥),2) =2(x) for anyz €U/ (g).

Then we have

wt(pa(¥)) = wti(¥) — wt. ().
It is obvious that p, sends all ®(uyy ®@ul,) (A € PT and w € W) to 1. Note
that Tg(uwxr @ Uk, ) = boo @ twr ®b_oo € B(Uy(g)).

Proposition 8.5.2. For b€ B(Aq(g)), set

Tg(b) = b1 @t ®by € B(oo) @ T, ® B(—00) C B(Uq(g))
(¢ € P). Then we have
Pa(G™(0)) = b6y, 5 G (1)
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Proof. Set 1 :=wt(b1) + ¢ + wt(ba) = wt;(b). Then for any b € B(co), we have
(Pn(G™(5)), (G (D)) = (G (b), G' (p(D))ay)
= (G"P(b), G"¥ (boo @1, @ p(D))) = (G™(b), p(G™™

6 n wt (D) ®b—00))>
= 5(Zg(b) = b®tn—wt(l~7) ®b,00) = 6(()2 = bfooa )

(b®
=b O

Hence the map p, sends the upper global basis of A,(g) to the upper global basis
of A,(n) or zero. Thus we have a map

Pa: B(A,(9)) = B(4,(n) [ |{0}.

Although the map p, is not an algebra homomorphism, it preserves the multi-
plications up to a power of ¢, as we will see below.

Lemma 8.5.3. Forz € U (g), if An(z) = 2(1) @ 2(2), then
(8.5) Ay (z) =g Do @),
Proof. Assume that (83)) holds for z € U,f(g). Note that
An(esr) = (e; @1 +1®e;)(2(1) @2 (2)) = €iT(1) @ T(2) +q_("”’Wt(w<1)))x(1) ®@(eix(2)).
On the other hand, we have
Ap(er) = (e @1+ ¢% ®@e;)(q" "Dz @ 2(1y)

= (eiq""" )z @ 31y + (¢ T 2 15)) @(eiz (1))

= g O (D)) @ aa) + (T z0) ©(eiz)).
Hence (BE) holds for e;x. O
Proposition 8.5.4. For ¢,0 € Ay(g), we have

pa(19) = ¢ OOy (4)p, (0).

Proof. For z € Uf (g), set Aq(x) = x(1) ® 2(2). Then, we have

(pa(¥0),2) = (W0, 2) = (W@ 0,¢" D wey @za) = (B, ¢ D x2) (0, 201))
= W) (4 V(8,2 1))
= ¢ OO (po (1), 22 (pa(6), 2 (1))

() gt WO =whO) (4, (1) @ pa(8), An(z))

— q(Wtr(w)»Wtr(e)_th(G)) (pa(V)pa(6), ).
Here, we used wt(z(1)) = — wt(pa(6)) in (a). O
8.6. Global basis of ﬁq(g) and tensor products of U,(g)-modules in O;.(g).
Let V' be an integrable U,(g)-module with a bar- 1nvolut10n —; that is, there is a
Q-linear automorphism — satisfying Pv = Pv for all P € U,(g ) and for all v € V.
Then, for any A € PT, there exists a unique bar-involution — on V(A\)® _V satisfying
(uy ®_v) =uy®_7 for any v € V.

Indeed, there exists = € 1+ [[5cq, 0y Ug (8)s @ Uy (9)—p, which defines a bar-
involution by setting

u®_v=E(u®_71)



404 S.-J. KANG, M. KASHIWARA, M. KIM, AND S.-J. OH

(see [33, Chapter 4]). Assume that V has a lower crystal basis (L(V), B(V)) and
an A-form Va such that (Va, L(V),L(V)) is balanced. Then we have

Proposition 8.6.1. The triple (V(/\)A ®a Va,L(\) @a, L(V), LN @a, L(V)) in
V(A) ®@_V is balanced.

Note that uy ®_ G'°%(b) is a lower global basis for any b € B(V), i.e.,
G]OW(U)\ ®b) = Uy Q_ Glow(b).

In particular, it applies to V/(\) ®_ V(u). Moreover, we have the following
proposition.

Proposition 8.6.2. Let A\, p € Pt and w € W. Then for any b € B(Uy(g)ar+wpu),
G (b)(u\ ® _ uyy) vanishes or is a member of the lower global basis of V(\) ®_
Vip)-

Hence we have a crystal morphism
(3.6) Tavwn: B(Uq(8)ariws) — B(A) @ B(p)
by G' (b) (ux @_ thu) = G* (w5 up (b)).
Similarly, we have a bar-involution — on V' ®, V(A) such that
m:6®+uA for any v € V.

Hence if V has an upper crystal basis (L"P(V'), B(V)) and an A-form Va such that
(Va, L™ (V),Lu»(V)) is balanced, then V ®, V(A) has an upper global basis. Note
that G"P(b) ®, uy is a member of the upper global basis for b € B(V).

In particular for A, u € P, V(A)®_V (1) has a lower global basis and V/(\)®_ V (u)
has an upper global basis.

The bilinear form

(e ) (V@ V() x (V) 2, V(i) ~ K
defined by (v ®_ v, v’ @, V') = (u,u')(v,v"), u,u’ € V(X), v,v" € V(u) satisfies
(az,y) = (z, p(a)y) for any z € V(A) @_V(n), y € V(A) @, V(u), a € Uy(g)-

With respect to this bilinear form, the lower global basis of V(A\) ® _ V(u) and the
upper global basis of V/(A) ®, V(u) are the dual bases of each other.

9. QUANTUM MINORS AND T-SYSTEMS

9.1. Quantum minors. Using the isomorphism ® in (81, for each A € PT and
1, ¢ € WA, we define the elements

A(p, Q) = P(uy ®ug) € Ag(g)
and
D(p,€) :=pn(A(p,C)) € Ag(n).

The element A(u, () is called a (generalized) quantum minor and D(u, () is called
a unipotent quantum minor.

Lemma 9.1.1. A(y,() is a member of the upper global basis of Aq4(g). Moreover,
D(u,¢) is either a member of the upper global basis of Aq(n) or zero.

Proof. Our assertions follow from Proposition B.1.3land Proposition 8.5.2] O
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Lemma 9.1.2 ([3 (9.13)]). For u,v € W and A\, € P, we have
AuX, vA)A(up, vp) = Au(A + p), v(A + p)).
By Proposition B.5.4], we have the following corollary.
Corollary 9.1.3. Foru,v € W and X\, u € PT, we have
D(uX, v\)D(up, vpu) = qf(”A’”“fu“)D(u(/\ + p), v(A + ).

Note that
D(p,p)=1 forpe Wi.

Then D(u, ¢) # 0 if and only if © < . Recall that for u, ¢ in the same W-orbit,
we say that p < ¢ if there exists a sequence {f}1<r<; of positive real roots such
that, defining A\g = ¢, A = sg,A—1 (1 < k < 1), we have (Bg, Ap—1) > 0 and
AL = .

More precisely, we have the following lemma.

Lemma 9.1.4. Let A € Pt and p,( € WA. Then the following conditions are
equivalent:

(i) D(w, Q) is an element of the upper global basis of Ay(n),
(i) D1, C) #0,

such that ¢ = u,
(vii) there exist u,v € W such that p = wh, ( = ul, and u < w.

Proof. (i) and (ii) are equivalent by Lemma The equivalence of (ii), (iii),
and (iv) is obvious. The equivalence of (v), (vi), and (vii) is well known. The
equivalence of (iv) and (vi) is proved in [18]. O

For any v € Ay(n) \ {0} and ¢ € I, we set

g;(u) :=max{n € Z>o | efu # 0},
ei(u):=max{n € Z>g | e "u # 0}.

Then for any b € B(A,(n)), we have
ei(G"P (b)) = €i(b) and & (G (b)) = &7 (D).
Lemma 9.1.5. Let A€ P™, u,( € WA such that u < ¢ andi € I.
(i) If n:= (hs,p) > 0, then
ei(D(; ) =0 and ;" Disip, () = D(1,0).

(i) If (hi, 1) <0 and s;p = ¢, then g;(D(p, ¢)) = —(hs, ).
(iii) If m:=—(h;,¢) > 0, then

i (D(p,Q)) =0 and ;"™ D(p, 5:¢) = D(p, ).
(iv) If (hi,¢) > 0 and p = s;C, then 5 (D(u, ¢)) = (hi, C).
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Proof. We have &;(A(p, ¢)) = max(—(hi, u),0) and &7 (A(p, ¢)) = max((h;,¢),0).
Moreover, p, commutes with egn) and ez‘(”).
Let us show (ii). Set £ = —(h;, s1). Then we have e/ A(u, ¢) = 0, which implies
ef™ D (1, ¢) = 0. Hence ;(D(p,¢)) < £. We have
e/ A ) = Alsinn, 0)-

Hence we have ez(-e)D(u, ¢) = D(sip, ¢). By the assumption s;u < ¢, D(s;u, () does
not vanish. Hence we have &;(D(u,()) > £.
The other statements can be proved similarly. (Il

Proposition 9.1.6 ([3, (10.2)]). Let A\, u € P* and s,t,s',t' € W such that £(s's) =
(8" +€(s) and L(t't) = L(t') + £(t). Then we have
(1) A(s'sA\ /N A(s" p, t'tp) = A=A (S, 't ) A(s' s\, U N).
(ii) If we assume further that s's\ < t'A and s'u < t'tu, then we have
(9.1) D(s'sA, ' VD (', t'tp) = ¢ AN Sm=t D (o' ¢ 41)D(s'sA, N,
or equivalently
(9.2)
gt 26/t‘hsl“)D(s’s)\, tAND(s' p, t'tp) = qls'n=t'tn, S,S)‘)D(s’,u, t'tp)D(s s\, t'N).
Note that (ii) follows from Proposition R5.4] and (i). Note also that both sides

of ([@2)) are bar-invariant, and hence they are members of the upper global basis as
seen by Corollary [4.1.5]

Proposition 9.1.7. For \,u € PT and s,t € W, set Zg(us)\@)(u)\)r) =
b ®t\®b_o and T4 (Uu ®(uw)r) = boo @ty @by with by € B(+o0). Then we
have

A(ANA(p, ) = G (13 (b @ by @),

Proof. Recall that there is a pairing («, «) : (V(A)®@_V(n)) x (V(N) @, V(n)) —
Q(q) defined by (u®@_ v,u' @, v') = (u,u’)(v,v"). It satisfies

(Plu®_v),u' @, v") = (u®_v,o(P)(u' @, ")) forany P e Uy(g).
For u,u’ € V(\) and v,v" € V(u), we have
(@ueu")Pvev"),P)=(Ve_v,Plu®, v))
= (p(P)(v' ®_v"),u®, v).
Hence for P € Uy(g), we have
(AN VA, t), Pac) = 6(¢ = sA 4 ) (p(P) (ur @ tg), thisn @, uy).
If Pa; = G (p(b)) for b € B(U,(g)), then we have
(A N A 1), 6(G () = 5(C = 5A+ 1) (G (B) ur © ) 1ar . 1)

The element G'°%(b)(uy ®_ wuy,) vanishes or is a global basis of V(\) @  V(u)
by Proposition Since ugy ®, u, is a member of the upper global basis of
V(A) @, V(u), we have

(A(A N A, ta), p(G(5))) = 6(C = sA + @) (1x,04(D) = usr @ uy,).
Here 7y ¢, B(ﬁq(g)a)\ﬂu) — B(A\) ® B(u) is the crystal morphism given in (8.
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Hence we obtain
A(S)\, )\)A(‘u,tﬂ) = Gup(lg_l(b)),
where b € B (ﬁq(g)) is a unique element such that
(Glow(b)(u)\ X_ us,u)a Us) ®+ U#) =1

. On the other hand, we have GV (b )uy, = u, and G'%(b_)uy = usy. The last
equality implies (G (b_))usy = uy because

(P(GM (b)) tsn, un) = (usr, G (b-)ur) = (usx, usp) = 1.
As seen in ([84), we have
Glow(bi)Glow(bJr)a)\th# N Glow(b, ®t>\+tu ®b+) S Uq_ (g)>s>\7>\U;(g)<u7t#a>\+t#.
Hence we obtain
(Glow(b_ QTattpy ® bi)(ux ®_ Utu); Usx @, U’u)
= (G (0-) G (0+) (ur ©_ ury), uan @, uy)
= (Glow(b+)(%\ ®_ Ugy), W(Glow(b—))(us/\ ®, “u)) =1

In the last equality, we used G°% (b1 ) (ux®@ ) = ux®@ (G (b4)ur,) = ur®@ _uy,
and o(G"% (b_)) (usx ®, uy) = (@(Glow(b—))usk) @y Uy = ux @ Uy
Hence we conclude that b = b_ @ tx44, @by (]

Let
i VA+R) = V(N @V(n)
be the canonical embedding and
Ut BA+p) — B(A) @ B(p)
the induced crystal embedding.
Lemma 9.1.8. For \,u € PT and z,y € W such that x > y, we have
Uz @ Uyy € Txu(B(A+ 1)) C B(A) @ B(p).

Proof. Let us show by induction on £(z) the length of x in W. We may assume
that  # 1. Then there exists ¢ € I such that s;x < x. If s;y < y, then s;z > s;y

and e (ugpy ® Uyy) = Us;zr © Us,yp. If 85y > y, then s,z > y and € (ugy ®

Uyu) = Ugzx ® Uyy. In both cases, uzy ® uy, is connected with an element of
(B + p). O

Lemma 9.1.9. For \,u € PT and w € W, we have
A(wA, M)A, 1) = G (T3, (tn @) @ury ).
Proof. We have
Tg (U ® uﬁ\) = by Qtr R b_oo,
Tg (1 @ u),) = boo Ot @ b_o,
where by, =) (uwy). Hence Proposition implies that
A(wA, A, 1) = G (T (bun @ trtpy @ b))

Then, 74 (Z;L(uu»\ Quy)® u,\ﬂf) = by ®trt, @b_o gives the desired result. [
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9.2. T-system. In this subsection, we recall the T-system among the (unipotent)
quantum minors for later use (see [25] for T-system).

Proposition 9.2.1 ([I1], Proposition 3.2]). Assume that the Kac-Moody algebra g
is of symmetric type. Assume that u,v € W and i € I satisfy u < us; and v < vs;.
Then

A(us;wog, v8;w;) A(uw;, voo;) = ¢~ P A(usiw;, v ) A(uwg, vsiw;) + A(ul, vA),
A(uw;, voo; ) A(us;w;, v8;w;) = qA(uw; ,v8;w;) A(us;wo;, v;) + A(ud, vA),
and

q(vs"'w“”wi*“w"’)D(usiwi, v8;w;)D(uwzy, vew;)

= q_1+(”w“”siwi_“wi)D(usiwi, vw;)D(uw;, vs;w;) + D(uX, v)

= ¢ I simvmusi @)D (4o vsio) D (usiws, veg) + D(u, v),
=i ’”Siwi_“siwi)D(uwi, vw;)D(us;wo;, vs;;)

= @t mivm ST D (o, vsm0;)D(usiwi, vws) + D(ud, vA)

= q1+(vwi”Usiwiiuwi)D(usiwi, vwi)D(uwi, ’USZ"(Di) + D(’IL)\, ’U)\),
where A\ = s;w; + w;.

Note that the difference of A and — Z ajw; are W-invariant. Hence we have
J#
D(uX,vA) = H D(uw;, vw;)~ % from Corollary 0.13] by disregarding a power of
J#i

q.
9.3. Revisit of crystal bases and global bases. In order to prove Theorem [0.3.3]
below, we first investigate the upper crystal lattice of D,V induced by an upper
crystal lattice of V' € O (g).

Let V be a Uy(g)-module in Oin(g). Let L"P be an upper crystal lattice of V.
Then we have (see Lemma [[.3.1])

@D ¢'&9/2(L"P), is a lower crystal lattice of V.
£epP
Recall that, for A € PT, the upper crystal lattice L"P()\) and the lower crystal
lattice L'°%()\) of V()\) are related by
(9.3) L(N) = @ gV =EO/2Low () ¢ Low(y),
£ebP
Write
Ve @ ExeV(N)
AeP+
with finite-dimensional Q(q)-vector spaces E). Accordingly, we have a canonical
decomposition
L' ~ @ C\®a, L"P(N),
AePt
where C, C F, is an Ag-lattice of E.
On the other hand, we have
D,V ~ @ E;®V(A).
AeP+



MONOIDAL CATEGORIFICATION OF CLUSTER ALGEBRAS 409

Note that we have
Dy ((a@u)@ (b)) ={(a,b)Pr(u®v") foru,ve€ V(N and a € Ey, b€ EJ.
We define the induced upper crystal lattice D, L"P of D,V by

D,L":= @ CY @a, L' (\) C DV,
AeP+

where CY :={u € E} | (u,Cy) C Ap}. Then we have
Oy (L™ @ (Du L'P)Y) C L™ (Ay(g))-
Indeed, we have
D,L" ={ueD,V | Dy (L' @u") C L"P(A44(9))}.
Since (L™ (\))Y = L°%()), we have

(Lup)v — Ae?Jr C;\/ ®A0 LlOW()\).
€

The properties L"(\) C L'°%()\) and L*(\)y = L'°¥()), imply the following
lemma.

Lemma 9.3.1. D,L"P is the largest upper crystal lattice of D,V contained in the
lower crystal lattice (L"P)V.

Let A\, u € PT. Then (LUP(A)®+Lup(u))V = L"(\)®_L'%(p) is a lower crystal
lattice of Dy, (V(A)®, V(1)) =~ V(A)@_V(1). Let Ey i V(N @, V(p) 5 V(N)@_
V() ~ Dy (V(A) @, V(1)) be the Uy(g)-module isomorphism defined by

Exp(u®@, v) = g m—Em) (u®@_v) forue V(N)eand v € V(p),.

Then

L = =y, (Lup()\) ®, L“p(,u))
= @ q(z\w)—(&m)Lup(/\)g ®_ Lup(,u),]
£mneP '

is an upper crystal lattice of V/(A) ® _ V(u). Since we have (A, p) — (§,17) > 0 for
any £ € wt(V()\)) and n € wt(V(u)), Lemma @31 implies that

(9.4) L CD,(L™(\) ©, L™ ().

Lemma 9.3.2. Let \,u € PT and x1,22,y1,y2 € W such that x > yr (k= 1,2).
Then we have

05) q“’“)‘(m’ij(wlA,sz)A(ylulyzu)
= Gup(z,\,t(uxl)\ ® Uy, ) ® Z,\,L(uxz)\ ® Uy,p)’)  mod gL"P(Ay(g))-
Proof. By the definition, we have
Az, 22A) Ay, y21) = Py e, v ((tayr ® thyyp) D(Usyx @ tyyp)")-
Hence we have
gAY A (g X, 2 N) A (Y1, yage)
= Pv(ne, vin ((uar @ ty, ) ® g @A) (5 @ Uyopr)")

= (I>V()‘)®+V(,U«) ((uﬂﬂl)\ @, U’ylu) ®(E)\,u(um2)\ S, Uyzu))r).
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The right-hand side of ([@.3) can be calculated as follows. Let us take vy, € L"P(A+pu)
such that ¢, (Vi) = Uz A @, Uy, € gL"P(N) @, L"P () for k =1,2. Here ¢y, : V(A +
) — V(A) ®, V(u) denotes the canonical Ug(g)-module homomorphism and such
a vy exists by Lemma Q.18

Then we have

G"P (ZA,_#I (Ui A @ Uy, 1) ®(ZA,_#1 (Uzor @ uyzu)) r)
= Oxyp(v1®vy) mod gL"™(Aq(g))
=Pvne, v (txn(01) ®(Erptrn(v2))’).

The last equality follows from (va,u) = (Ex . (v2), L, (w)) for all u € V(A + p).
On the other hand, we have

(V1) = Up n @, Uy, mod gL"P(N) @, L"P(p)
and ~
S (e (v2) = Expu(Uasr ®, ty,,) mod L.
Hence

Pvne, viw (g x ®, Uy ) @ (Ugyr @ Uyyp)”)
= Py e, v (V1) @Exueau(v2))")  mod L™ (A4(g))
by (@4), as desired. a
Theorem 9.3.3. Let A\ € PT and z,y € W such that x > y. Then we have
D(zA, yA\)D(yA, A) = D(zA, A) mod gL"P(A4(n)).
Proof. Applying p, to (@.H), we have
D(zA, yA\)D(yA, )
= pa (G“p(Z;’l)\(um,\ ® Uyr) @ Z;’l)\(uw\ ® u,\)r)) mod ¢L"P(A,(n)).

Hence the desired result follows from Proposition 85.2] Proposition 5.4 and
Lemma [9.3.4] below. (]

Lemma 9.3.4. Let A € PT and z,y € W such that © > y. Then we have
Ty (ZA,}I (tex @ uyn) @(Ty y (uyr @ uy)) r) = A (Uar) @ lyrtr ®b—cc.

Proof. We shall argue by induction on £(x). We set b,y = Tx(uzy). Since the case
x = 1 is obvious, assume that x # 1. Take ¢ € I such that 2’ := s;2 < .

(a) First assume that s;y > y. Then we have y < /. Hence by the induction
hypothesis,

(9.6) Tg (zﬁ(um/A R uyx) (T4 (uga ®uA))r> = by @ tyatr @b_oo.
We have gpl—(uzq) = <hl,.’tl>\> and @i(bz’)\ ®ty)\+)\®b700) = (pi(bm/)\ ®ty)\+)\) =
(hiy @' Ay + (hiy yA) > (hy, '), Hence, applying ﬁhi’m M to @5), we obtain

g (Z)\T)\l(um)\ ® uy,\) ®(Z/\T)\1(uy,\ ®u>\))r) =boA @lyrgr ®b_o.

(b) Assume that ¢y’ := s;y < y. Then we have y’ < 2/, and the induction
hypothesis implies that

Tg (Z/\,_)\l(um/)\ DUy 2) @ (T4 y (uyrr @ uy)) r) = box @ty rir @b
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Apply €; (hay )‘)fi(h“w AMYN) 46 both sides. Then the left-hand side yields

g (ZA:\l(uM ® Uy ) ®(Z/\T)\1(uyk ® u/\))f).
Since @;(byx @ tyagr) = (hi, &' A) + (hi, ¥’ A+ A) > (hi, 2’ A + '), the right-hand
side yields

& (hivy A)ﬂ(hi,x PRERTON (barx ®tyagr @b_oo)

=& (o) ((Jz;hhm A /\>bm’/\) @ty ar @b_oo)
= é;‘ (hiy' ) ((le(m,y A>b“) @ty ata @b_w),
Since &} (bzr) = —@i(ber) = (hi, ) and ﬁ(hi,y’)\>bm)\ _ Ji* <hi,y’)\>bx)\7 we have
é: (hiyy' \) ((ﬁ<hi’y')\>bz)\) ®ty/>\+)\ X bfoo) =b,\® ty)\Jr)\ R b o O

9.4. Generalized T-system. The T-system in Section can be interpreted as
a system of equations among the three products of elements in B"P(A,(g)) or
B"(A,(n)). In this subsection, we introduce another among the three products of
elements in B"(A,(g)), called a generalized T -system.

Proposition 9.4.1. Let yp € Ww;, and set b =T, (u,) € B(co). Then we have
(9.7)
A(/‘v Siwi)A(wiv wl) = qzlGup (Z;},,ﬁn (u# ® qu‘,) ® (z‘;ri,qu (usiwi & qu‘,))r)

+ Gup (Zz_ﬂ}-ﬁ—sle (e?b) ® u‘zrva-Q—sle) .

Note that if 4 = w;, then b = 1 and the last term in ([@.7)) vanishes. If p # w;,
then e} (b) = 1 and 7, . (E/b) € B(w; + $i@;), Uy @ U, € Ty, B(25).

Proof. In the sequel, we omit Z;Z{ , for the sake of simplicity. Set

u = A(Ma Siwi)A(wia wi) - qi_lGup ((uu ® uwi) & (usiwi ® qu)r) .

Then wt,(u) = X :=w; + s;w;.
It is obvious that we have uf; = 0 for j # i. Since €;(Us,;w; ® Uz, ) = U, @ U,
we have
G"™ ((uu & uwi) ® (usiwi & uwl')r) Ji= G"? ((uu ® uwi) ® (uwi & uwi)r)
= A(p, wi) A(w;, w;)
— Gy © 0L, )G P (s, @ ).
Here the second equality follows from Lemma and the third follows from
Proposition B3l On the other hand, we have

(A(p, i) A(wi, @) fi = (A, siw:) fi) (A(wi, @i)t; )
= q{lA(M, ’CUi)A(wiy wz)

Hence we have uf; = 0. Thus, u is a lowest weight vector of weight A with respect
to the right action of U,(g). Therefore there exists some v € V() such that

u=o(v®uy).
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Hence we have p,(u) = tx(v) € Ag(n). On the other hand, we have
Po (A1, 5iw:) A, @i)) = p (A(p, $i%4)) Pa (A(wi, @)
= D(u, siwi) = G (D)
w (GYP (23 (8rD))) -
Note that since €} (€;b) = 0 and €}(€;b) < —(hj,a;) for j # i, we have &b €
i (B(A))-

Hence in order to prove our assertion, it is enough to show that
Pn (G ((uy ® Us,) ® (Usy o, @ Us,)")) = 0.
This follows from Proposition and
(9.8) Tg ((up @ Ug,) @ (U0, D Um,)") = DR\ @ Eib_oo.
Let us prove ([@.8). Since
(uu ® U;) ® (Us;m; @ Ug,)" = é?((uu ® U, ) @ (U, @ uwi)r)7
the left-hand side of ([@.8)) is equal to
é7 (Ta ((up ® uw,) @ (U, @ us,)")) = € (b® tow, @ b_oo).
Since € (b) =1 < (h;, 2w;) = 2, we obtain
€ (b trm, Db_oo) =bR@tog, a, DEb_ o =bR Ty ®Eb_. O

10. KLR ALGEBRAS AND THEIR MODULES

10.1. Chevalley and Kashiwara operators. Let us recall the definition of sev-
eral functors on modules over KLR algebras which are used to categorify U~ ( g)\z/[qil} .

Definition 10.1.1. Let 8 € Q™.
(i) ForieI and1 <a <|p|, set
Q)= Y e) € RE).
velB v,=i
(ii) We take conventions
E;M = e, ()M,
EiM = ey (1) M,

which are functors from R(B)-gmod to R(8 — a;)-gmod.
(iii) For a simple module M, we set

gi(M) =max{n € Z>o | E;!M # 0},

e; (M) = max{n € Zxo | E "M # 0},

EM = ¢ ML) v M,

FrM =g MM v L),

EiM = ¢} Msoc(E:M) = '™ " hd(E;M),

B M = q; " Msoc(Br M) = ' 0 nd(E7 M),
Emaspr = BN gnd B e = EF S
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(iv) Fori e I and n € Z>o, we set

L) =" P L) 0o L)
—_—
Here L(i) denotes the R(c;)-module R(«;)/R(a;)x1. Then L(i™) is a self-
dual real simple R(na;)-module.

Note that, under the isomorphism in Theorem 212 the functors E; and E

correspond to the linear operators e; and e} on Aq(n)ziex1) = t(Ug (8)71,41) C

Ay(n), respectively. Note also that, for a simple R(5)-module S, we have E; F;S ~
S, and F;E;S ~ S if ¢;(M) > 0.

In the course of proving the following propositions, we use the following nota-
tions:

O i, \ZTa, T — Q. i(x x
(10.1) Qi,j(xaaxa+1,l'a+2) — QZJ( asTatl) QZJ( a+2, a+1).
Lg — Ta+2

Then we have
Ta+1TaTa+1 — TaTa+1Ta = Z @i,j (favxa+1axa+2)ea(i)ea+l(j)ea+2(i)'
i,j€1

Proposition 10.1.2. Let 8 € Q" with n = |B|. Assume that an R(B)-module
M satisfies E;M = 0. Then the left R(c;)-module homomorphism R(a;) @ M —
q“P M o R(ev;) given by

(10.2) e(i)@ur— 11 Th(u®e(i))
extends uniquely to an (R(ay; + B), R(«a;))-bilinear homomorphism
(10.3) R(a;) o M — ¢*P M o R(ay).

Proof. (i) First note that, for 1 < a <mn,
(10.4)
T Tae1€a(D)Tag1 Tn(u@e(i) = Tag1 -+ Tn(e1 (D)1 Tam1(u®e(i))) =0

since ;M = 0.

(ii) In order to see that (I0.3)) is a well-defined R(«; + 3)-linear homomorphism, it
is enough to show that (I0.2)) is R(S)-linear.

(a) Commutation with z, € R(8) (1 < a <n): We have

Tap1T1 T (u@e(i) =1 Ta1Tag1Ta -+ Tn(u®e(d))
=71 Tae1(TaZa + €4 (1)) Tat1 -+ Tn(u®e(i))

=Ty -Tnxa('U'@e(i))

by ([I0.4).
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(b) Commutation with 7, € R(8) (1 < a < n): We have
Tap171 To (U@ (i)
=71 Tae1(Tat1TaTat1)Tat2 " Tn (u@ e(i))

=Ty Ta—l(TaTa+1Ta+ Z§i7j(xaa $a+17$a+2)€a(i)€a+1(j))7'a+2 e Tn(u®€(i))
J

=Ty TpTa (u@e(i))

+ Z Ty 'Ta—léi,j (Tas Tat1, Tar2)€a(i)ar1(F)Tat2 T (u® e(i)).
J

The last term vanishes because E; M = 0 implies
T1 " Taflf(xa, $a+1)g(xa+2)ea(i)7a+2 T (U® e(l))
- g(xa+2)7_a+2 T Tnel(i)Tl e Taflf(l'av xa+1)(u ® 6(’&)) =0

for any polynomial f(z,,Ze41) and g(za42).
(iii) Now let us show that (I03]) is right R(c;)-linear. By (I04]), we have

T Ta1TaTa T (u®e(i) =71 Tae1 (TaZat1 — €a(i)) Tag1 - T (u @ €(i))
=71 Talai1Tat1 - Tn(u®@e(i))
for 1 < a < n. Therefore we have
T1TY - -Tn(u®e(i)) =Ty TpTnil (u®e(i)) =71 Tn(u®e(i)x1). a

Recall that for m,n € Z>¢, we denote by w[m, n] the element of &,,,, defined by

k if1<k<
(10.5) wim,n)(k) = " Fm s Rsm,
k—m im<k<m+n.
Set Tw[m,n) = Ti, =" Ti,, where s;, ---s;_is a reduced expression of w[m,n]. Note

that 7,[m,n) does not depend on the choice of reduced expression [14, Corollary
1.4.3].

Proposition 10.1.3. Let M € R(5)-gmod and N € R(y)-gmod, and set m = |j|
and n = |y|. If E;M =0 for any i € supp(y), then

VR U Ty[m,n] (u®wv)
gives a well-defined R(B + v)-linear homomorphism N o M — ¢® M o N.
Proof. The proceeding proposition implies that
VU Tyimn(u®v)  forue M,ve R(y)

gives a well-defined R(5 + v)-linear homomorphism R(y) o M — M o R(). Hence
it is enough to show that it is right R(y)-linear. Since we know that it commutes
with the right multiplication of xg, it is enough to show that it commutes with the
right multiplication of 7. For this, we may assume that n = 2 and k = 1. Set
Y=o+ Q.

Thus we have reduced the problem to the equality

T1(mam1) - (Tg17m) (u@e(i) ® e(5)) = (1271) - - (T 1Tm) T (u @ (i) ® e(5)
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for w € M, which is a consequence of
(271) -+ (TaTa=1)Ta(Ta417a) -+ (Ti17m) (u @ (7)) @ €(5))
= (12m1) -+ (Tat17a)Tas 1 (Tar2Tas1) - - (Tms17m) (u @ €(i) @ €(5))
for 1 < a < m. Note that
Ta(Tat17a)  ++ (Tms17m) (u @ e(i) @ e(5))
= Ta(Tat17a)€at1(1)ear2(j) (TayaTas1) - (Timi1Tm) (u @ e(i) @ €(j))
and
Ta(Tat17a)€at1(1)€at2(J)
= (Tas17a)Tar1€at1(1)€ar2(5) = Qji(Tas Tay1, Taya)ea(d)ear1(i)ear2())-

Hence it is enough to show

(r271) -+ (TaTa—1)Q; i (Tas Tat1, Tat2)ea(])
(Tat2Tas1) - (Tmg1Tm) (u @ e(i) ® e(j)) = 0.
This follows from
(271) - (TaTa—1) f(Ta) 9(Tar1, Tar2)ea(F) (TaraTar1) - (Tm+1Tm)(u® e(i) ® e(j))
= (127 7a) (71 Tam1) [ (%a)9(Tas1, Tat2)eal))
(Tat2Tat1) -+ (Tmy17m) (U@ e(i) @ e(3))
= (727 7a)9(Tat1, Tar2) (Tat2Tat1) - (Tm41Tim)
e1(5)(m1 - Tam1) f(2a) (u@e(i) @ e(j))
=0
for 1 <a<mand f(z,) € k[z.], 9(Tat1,Tat2) € K[Tat1, Tata)- O
Let P(i"™) be a projective cover of L(i"). Define the functor
E™ : R(8)-Mod — R(8 — na;)-Mod
by

EM (M) = P(i")Y @ EI'M,
R(na;)

where P(i")¥ denotes the right R(na;)-module obtained from the left R(3)-module

P(i™) via the anti-automorphism . We define the functor E;k ) in a similar way.
Note that
E ~ [n];!E™.

Corollary 10.1.4. Let R be a symmetric KLR algebra. Leti € I and M a simple
module. Then we have
K(L(Z>7M) = gi(M)7

Proof. Set n = ¢e;(M) and My = EZ(")(M) Then the preceding proposition implies
A(L(i), M) = (a;, wt(Mp)). Hence we have A(L(i), My) = 0, which implies

A(L(i), M) = A(L(i), L(i") o Mo) = A(L(3), L(i")) + A(L(i), My) = n. O
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Proposition 10.1.5. Let M, N be modules and m,n € Z>g.
(i) If E"™'M =0 and E"™'N = 0, then we have

EM™T (M o N) o gmrtnthawt0) gm) yp o gV
(i) If Ef ™M =0 and Ef "' N =0, then we have
E; (M o N = gt mihiwt ) (M g o B,

K3

Proof. Our assertions follow from the shuffle lemma [2I] Lemma 2.20]. O

The following corollaries are immediate consequences of Proposition [0.1.5]

Corollary 10.1.6. Leti € I, and let M be a real simple module. Then EimaXM 18
also real simple.

Corollary 10.1.7. Let i € I, and let M be a simple module with €;(M) = m.
Then we have E*M ~ Ei(m)M.

Proposition 10.1.8. Let M and N be simple modules. We assume that one of
them is real. If e;,(M V N) =¢;(M), then we have an isomorphism in R-gmod

EM>(MV N) ~ (E>M) V N.
Similarly, if ef(N'V M) = eX(M), then we have
E™X(N'V M) ~ (N V E™>M).

Proof. Set n. = £;(M V N) = &;(M) and My = E™>M. Then M or N is real.
Now we have

L(i") ® My ® N — EMNM V N) ~ L(i") ® E*(M V N),

which induces a non-zero map My&N — EimaX(M V N). Hence we have a surjective
map

My o N — E™(M V N).
Since My or N is real by Corollary [0.I.6] Mo N has a simple head and we obtain
the desired result. A similar proof works for the second statement. |

10.2. Determinantial modules and T-system. We will use the materials in
Section [@ to obtain properties on the determinantial modules.

In the rest of this paper, we assume that R is symmetric and the base field k is
of characteristic 0. Under this condition, the family of self-dual simple R-modules
corresponds to the upper global basis of A,(n) by Theorem 2141

Let ch be the map from K(R-gmod) to A,(n) obtained by composing ¢ and the
isomorphism (2.2)) in Theorem

Definition 10.2.1. For A € PT and p,( € WA such that p < ¢, let M(p,¢) be a
simple R(¢ — p)-module such that ch(M(u, ¢)) = D(w, ¢).

Since D(u, ) is a member of the upper global basis, such a module exists uniquely
due to Theorem [ZT4 The module M(y, {) is self-dual, and we call it the determi-
nantial module.

Lemma 10.2.2. M(y,() is a real simple module.
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Proof. Tt follows from ch(M(z,¢) 0 M(p,¢)) = ch (M(1,¢))* = ¢~ (€<=mD(2p, 2¢)
which is a member of the upper global basis up to a power of ¢q. Here the last
equality follows from Corollary O

Proposition 10.2.3. Let \,u € Pt, and s,s',t,t' € W such that {(s's) = £(s") +
0(s), L(t't) = L")+ L(t), s'sA = t'X, and ' < t'tu. Then

( ) M(s'sA, t'A) and M(s'p, t'tp) commudte,
( (s"sA E'A), M(s', t'tp)) = (s'sA + t'\, t'tp — s'p),
(iii) ( §'SAUN), M(s', t'tp)) = (EA, t'tp — '),
A(M(s wyt t,u), (s'sA,t'N)) = (s — t'tp, s'sA).
Proof. It is a consequence of Proposition (ii) and Corollary LTl O

Proposition 10.2.4. Let A € PT, u,( € W such that p < ¢ and i € 1.
(1) If’fL = <h1a:u‘> > 07 then
M1, O)) =0 and M(siu, ) ~ F'M(u, ¢) ~ L(i"™) V M(u, ¢) in R-gmod.
(ii) If (i, ) <0 and sip 2 C, then &i(M(p, ) = —(hi, ).
(iii) Ifm =—(h;,¢) >0, then
M, O) =0 and M(p,5:C) ~ EF™M(u, ¢) ~ M(p, ¢) V L(i™) in R-gmod.
(iv) If (hi; ¢) = 0 and p = s;C, then ef (M(p, ) = (hi, C).
Proof. Tt is a consequence of Lemma [B.T.5 O

Proposition 10.2.5. Assume that u,v € W and i € I satisfy v < us; and v <
v8; < U.
(i) We have ezact sequences

(106) 0 — M(u), v\) — ¢SV Zi—UFIM (45,1, v5;20;) © M(utw;, veo;)
10.6
— ¢ L siE ) M (45,005, veoy) © M(uy, vsiwg) — 0,

and
(10.7)
0 — ¢ HFovsimi—umI M (45,00, veo;) © M(uco;, vs;o;)
— q(”w“vs’iwi_“siw’i)M(uwi, vw;) 0 M(us;wo;, vs;w;) — M(ul, vA) — 0,
where A\ = s;w0; + w;.
(ii) »(M(uw;, vw;), M(us;w;, vs;w;)) = 1.

Proof. Since the proof of ([I0.6) is similar, let us only prove (I07). (Indeed, they
are dual to each other.)
Set

X = q(”w“vsiwﬁ“w"’)M(usiwi, vw;) o M(uw;, vs;w;),
Y = q(”w“”siwﬁusiwi)l\/l(uwi, vw;) © M(us;w;, vs;w;),
Z = M(uX,vA).
Then Proposition implies that
ch(Y') = ch(¢X) + ch(Z).

Since X and Z are simple and self-dual, our assertion follows from Lemma [3.2.79
O
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10.3. Generalized T-system on determinantial module.

Theorem 10.3.1. Let A € PT and py, pio, u3 € WA such that gy < po < pz. Then
there exists a canonical epimorphism
M(p1, p2) © M(pz, pi3) = M(pa, p3),

which is equivalent to saying that M(py, pa) V M(pe, ps) ~ M(p1, ps).
In particular, we have

AM(p1, p2), M(p2, p3)) =0 and  A(M(p, p2), M(p2, 13)) = — (1 — pi2, p2 — p13)-

Proof. (a) Our assertion follows from Theorem [0.3:3]and Theorem E21 when pz =
A

(b) We shall prove the general case by induction on |A — us|. By (a), we may
assume that psz # A. Then there exists ¢ such that (h;, u3) < 0. The induction
hypothesis yields that

M(p1, p2) V M(pa, sipes) =~ M(pa, sipts)-
Since p1 =< po =X pg = s;u3, Proposition [0.24] (iv) gives
&7 (M(pz, sip3)) = ef (M(pa, sip13)) = —(hi, p13).
Then Proposition [0.1.8 implies that
E;™ (M, p2) V Mpiz, sip1z)) = Mpun, p2) V(B M(a, sis13)),
from which we obtain
M(p1, p3) = M(p, p2) V M(pa, ps).
By Lemma [3.1.4] we have K(M(ul,ug), M(u2, p3)) = 0. Hence we obtain

A(M(p1, 12), M(pi2, 1)) = = (WE(M(p1, 1), Wt(M(pi2, p13))). D
Proposition 10.3.2. Lett €I and z,y,z € W.
(1) If b(xy) = L(x) + L(y), zs; > z, xYy > zs;, and x > z, then we have
d(M(zyw;, 28,w;), M(xw;, zw;)) < 1.
(i) If b(zy) = L(z) + L(y), xs; > x, xs; > zy, and x > z, then we have
d(M(zs;w;, zyw;), M(xw;, zw;)) < 1.
Proof. In the course of proof, we omit Z;;wi for the sake of simplicity. If yw; = w;,
then the assertion follows from Proposition [0.23] (i). Hence we may assume that

Y i=ys; <y.
Let us show (i). By Proposition @41] we have

A(ywi7 Szwt)A(wu wl) = qilGup ((uywz ® uwi) ® (usiwi ® uwi)r)
+ Gy (ED) @ ),
where A = @; + siw; and b = Tg, (uyw,) € B(00). Let S}, be the operator on

A, (g) given by the application of eyl“) e egf”) from the right, where z = s;, - - - 5,

is a reduced expression of z and ay = (hj,sj,_, -+ s, A). Then applying S} , to
([I0.]), we obtain
A(yw;, z8;w;) A(ws, 2w0;) = q_lGup ((uywz @ Ug;) @ (Uzsjom; @ Uzeo,)")
+ G (ED) @ uly).

(10.8)
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Recall that p € P is called z-dominant if ¢, > 0. Here x = s, - - - s;, is a reduced
expression of x and ¢ := (h;,, S5, _, -+~ si, 1) (1 < k < 7). Recall that an element
v € Ay(g) with wty(v) = p is called z-highest if u is x-dominant and

flex (ek—1) . ple)y — 0 for any k (1 <k <r).

ik Tk—1 i1

If v is z-highest, then v is a linear combination of z-highest G"P(b)’s. Moreover,

Sz G (b) = fi(rc"') . ~fi(lc1)G“p(b) is either a member of the upper global basis or

zero. Since A(yw;, 28;w;)A(w;, zw;) is x-highest of weight p:=yw; +w;, we obtain

A(xywh ZSZ"ZUZ‘)A(LE’ZUZ‘, sz) = q_lGup ((umywl & umwi) & (’U/zsiwi ® uzwi)r)
+ Sz u G (T, 1 (E7D) @ uly).
Applying p,, we obtain
qCD(LL'y’ZUi, Zsiwi)D(xwia sz) = q—lpnGup ((uxywl ® umwi) & (uzsiwi ® uzwi)r)

+PaSe G (751 (€70) ® uly)

for some integer c¢. Hence we obtain (i) by Lemma B22T9I (i).
(ii) is proved similarly. By applying ¢* to (I0.8]), we obtain
q(s'iw“’w”)_(yw”’wi’i)A(siwi, ywl)A(w“ wl)
= qilGup ((usiwi ® uwi) ® (uywq‘, ® uwi)r)
+ G"P(uy @ (73 '€rb)").

Here we used Proposition 814l Then the similar arguments as above show (ii). O

Proposition 10.3.3. Let x € W such that xs; > x and xw; # w;. Then we have
D(M(:L‘Siwi, xwi), M(,’E?ﬂz7 wz)) =1.

Proof. By Proposition [0.3.2 (ii), we have 2(M(zs;w;, xw;), M(zw;, w;)) < 1. As-
suming 2(M(zs;w;, xw;), M(2w;, ;) = 0, let us derive a contradiction.
By Theorem [[0.3.T] and the assumption, we have

M(xs;w;, x0;) 0 M(xw;, ;) ~ M(xs;to;, w;).
Hence we have

e;(M(zsiwi, ;) = €} (M(zsiwi, 2w;)) + €5 (M(zw;, w;3))

for any j € I. Since xs;w; = xw; < s;w;, Proposition [0.2.4] implies that

Ej(l\/l(a?slwl,wz)) = E;(M(l‘w“wl)) = <h]7wz>

It implies that

e;(M(zs;w;, xw;)) =0 for any j € I.

It is a contradiction since Wt(M(xsiwi, :sz)) = xs;w; — xw; does not vanish. [
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11. MONOIDAL CATEGORIFICATION OF A, (n(w))

11.1. Quantum cluster algebra structure on A,(n(w)). In this subsection, we
shall consider the Kac—-Moody algebra g associated with a symmetric Cartan matrix
A = (a;,;)ijer- We shall recall briefly the definition of the subalgebra A,(n(w)) of
Aq(g) and its quantum cluster algebra structure by using the results of [II] and
[23]. Remark that we bring the results in [I1] through the isomorphism (83]).
For a given w € W, fix a reduced expression w = s;_ - - s;,.
For s € {1,...,r} and j € I, we set
syr=min({k | s <k <r, iy =i} U{r+1}),
s_r=max({k|1<k<s, i =151 U{0}),
s7(j)=max({k | 1 <k <s, ir =35} U{0}).
We set
(11.1) U =84, -+ S, for 0 <k <,
and
A =ugw;, for 1 <k <r.
Note that A\, = up_1@;,, if k- > 0. For 0 <t < s <r, we set

DA\, \) i 0 <t
D(s,t) =S D(\s,w;,) if0=t<s<r,
1 ift=s5=0.

The Q(g)-subalgebra of A,(n) generated by D(4,i_) (1 <4 < r) is independent
of the choice of a reduced expression of w. We denote it by A,(n(w)). Then every
D(s,t) (0 <t < s < r) is contained in A,(n(w)) [II, Corollary 12.4]. The set
B (A, (n(w))) := B (Ag(g)) N Ag(n(w)) is a basis of Ay(n(w)) as a Q(g)-vector
space [23] Theorem 4.2.5]. We call it the upper global basis of Az(n(w)). We
denote by Ag(n(w))zp=1 the Z[g*]-module generated by B"™ (A, (n(w)). Then
it is a Z[g*']-subalgebra of A (n(w)) [23, Section 4.7.2]. We set A,i/2(n(w)) :=
Qg"/?) @) Aq(n(w)).

Let J={1,...,r}, Jp:={k e J |k =r+1}, and Jex :=J \ Jpr.

Definition 11.1.1. We define the quiver QQ with the set of vertices Qo and the set
of arrows Q1 as follows:

(Qo) Qo=J=A{1,....r},

(Q1) There are two types of arrows:

‘aisvitl

ordinary arrows @ s ———t ifl1 <s<t<sp <ty <r41,

horizontal arrows : S —>S_ ifl<s_<s<r.

Let B = (bi,j) be the integer-valued J x Jex-matriz associated to the quiver @ by
B.2).
Lemma 11.1.2. Assume that 0 <d<b<a<c<r and

e iy, =i, when b# 0,
® iy =1, when d # 0.
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Then D(a,b) and D(c,d) q-commute; that is, there exists A € Z such that
D(a,b)D(c,d) = ¢*D(c,d)D(a,b).
Proof. We may assume a > 0. Let ug be as in (ILI)). Take s’ = ugq, s = u; ‘u,,
t' =ug,and t = u;lub. Then we have
D(s'w;,,t'tw;,) = D(a,b) and D(s'sw; ,t'w; )= D(c,d).

From Proposition [@.1.6] our assertion follows. O

Hence we have an integer-valued skew-symmetric matrix L = (); j)1<i j<r such
that

D(i,0)D(j,0) = ¢**D(j,0)D(i, 0).
Proposition 11.1.3 ([I1, Proposition 10.1]). The pair (L, B) is compatible with
d=2in [B&3).
Theorem 11.1.4 ([11, Theorem 12.3]). Let 7,1,2([.]) be the quantum cluster al-

gebra associated to the initial quantum seed [.#]:=({q~@%)/4D(s,0) }1<s<r, L, B).
Then we have an isomorphism of Q(q'/?)-algebras

Q(q"?) ®gpgr1/2) Dy12 (7)) = Agra(n(w)),
where dy := Xy — w;, = wt(D(s,0)) and A2 (n(w)) = Q(q"/?) ®q(q) Aq(n(w)).

11.2. Admissible seeds in the monoidal category C,. For 0 <t < s <r, we
set M(s,t) = M(As, A¢). It is a real simple module with ch(M(s,t)) = D(s, t).

Definition 11.2.1. For w € W, let Cy, be the smallest monoidal abelian full sub-
category of R-gmod satisfying the following properties:

(i) Cy is stable under the subquotients, extensions, and grading shifts,
(ii) Cy contains M(s,s_) for all 1 < s < {(w).

Then by [II], M € R-gmod belongs to C, if and only if ch(M) belongs to
Ay(n(w)). Hence we have a Z[g*']-algebra isomorphism

K (Cu) ~ Ag(n(w))zgye.
We set
A= (AM(E,0),M(5,0))1<ij<r  and D = (d;)i<i<r := (WH(M(4,0)))1<i<r

Then, by Proposition [0.2.3] % := ({M(k‘,O)}lgkgr,—A,é,D) is a quantum
monoidal seed in C,,. We are now ready to state the main theorem in this section.

Theorem 11.2.2. The pair ({M(k‘,())}lgkg,g) is admissible.

As we already explained, combined with Theorem [C.T.3] and Corollary [.1.4] this
theorem implies the following theorem.

Theorem 11.2.3. The category C,, is a monoidal categorification of the quantum
cluster algebra Aji/2(n(w)).

In the course of proving Theorem I1.2.2] we omit grading shifts if there is no
danger of confusion.
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We shall start the proof of Theorem [[1.2.2] by proving that, for each s € Juy,
there exists a simple module X such that

(a) there exists a surjective homomorphism (up to a grading shift)
X 0 M(s,0) = o5, ,>oM(t,0)°%,
(11.2) (b) there exists a surjective homomorphism (up to a grading shift)
M(s,0) 0 X — o p, .<oM(£,0)° b0,
(c) o(X,M(s,0)) =1.

We set
=15 €1,
Iy :={ix | s<k<sy} CI\{x},
A= M olaig,iy| — M(s™ olas, ‘
t<$<to+<34r (t7 0) yGOIS (S (y)7 0) v

Then A is a real simple module.
Now we claim that the following simple module X satisfies the conditions in

(@L2):
X :=M(sy,s) V A

Let us show (ILZ) (a). The incoming arrows to s are

‘azqitl

ot ——sforl<t<s<ty <sy,
e 5. —>s.
Hence we have
O by, =M (£,0) = A 0 M(s,.,0).
Then the morphism in (a) is obtained as the composition,
(11.3) X oM(s,0) — Ao M(sq,s)oM(s,0) > AoM(sy,0).

Here the second epimorphism is given in Theorem [[0.3.1] and Lemma [3.1.5] asserts
that the composition (IT3) is non-zero and hence an epimorphism.
Let us show (ITZ) (b). The outgoing arrows from s are

‘azqitl

o s ——t fors<t<sy<ty<r+1.
e s—s_ ifs_>0.

Hence we have

(11.4) t;bti<0 M(t, O)O—bt,s ~ M(s_,0) 0 (yeols M((5+)_(y)70)0—az,y) .

Lemma 11.2.4. There exists an epimorphism (up to a grading)
Q: M(s,0) 0 M(s4,5) 0 A — 04, . <oM(t,0)° 0.
Proof. By the dual of Theorem M0.31] and the T-system ([[0.7) with i = is, u =
us, —1, and v = ug_1, we have morphisms
M(s,0) — M(s_,0) o M(s,s_),
M(s,5-) © M(54,5) = oyen (o} M((54) ™ (1), s (1))
~ oyer, M((54+) ™ (y), s~ ())° ",

Here the last isomorphism follows from the fact that (s+)”(y) = s~ (y) for any
yE{zUly={ix | s <k<syi}
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Thus we have a sequence of morphisms
M(S,O) © M(S-l-a S) oA >L> M(5—7O) © M(S,S_) © M(S+75) oA

¥ - — o—
— M(s-,0) 0 (0,er, M((s4+) ™ (y), s~ (y))° ") 0 A.
By Lemma (i), the composition ¢ := @9 0 ¢ is non-zero.
Since A = oyer M(s~ (y),0)°~**v, Theorem [0.3.1] gives the morphisms

M(s,0) 0 M(s1, ) 0 A —%= M(s_.0) 0 (0,1, M((s1) " (5). 5~ (1))° ) 0 A

[ B o
. M(S—yo) e} (OyGISM((SJr) (y),O) at,y)
~ 04, ,<oM(t,0)° 7.

Here we have used Lemma[3.2.22] to obtain the morphism ¢. Note that the module
oyer,M((s+)~ (v), s (y))° v is simple. By applying Lemma B0 once again,
¢ o ¢ is non-zero, and hence it is an epimorphism. O

Lemma 11.2.5. We have 2(X,M(s,0)) =1
Proof. Since A and M(s,0) commute and D(M(s+,s), M(s,O)) = 1 by Proposi-
tion [0.3.3] we have

b (X, M(5,0)) <b(M(s4,s),M(s,0)) +0(A,M(s,0)) <1

by Proposition B2.T0l and Lemma B23] If X and M(s,0) commute, then (I1.2)
(a) would imply that ch (o, 5, . >0M(t,0)°% <) belongs to K (R-gmod)ch(M(s,0)).
It contradicts the result in [I0] that all the ch(M(k,0))’s are prime at ¢ = 1. O

Proposition 11.2.6. The map Q factors through M(s,0) o X; that is,

M(s,0) o M(sy, s Otibe . <0M(t,0)7 0.

\/

Here 7 is the canonical surjection.
Proof. We have 1 =1 (M(s,0),M(sy,s) V A) by Lemma [T.25] and
b (M(s,0), M(s4,s)) +b(M(s,0),4) =1

by Proposition [0.3.3] with = us, 1, ¢ = ;. Hence M(s,0) o M(sy,s) o A has a
simple head by Proposition (iii). |

End of the proof of Theorem [1.2.21 By the above arguments, we have proved the
existence of X which satisfies (ILZ). By Proposition B22.I7 and [IT2)) (c), M(s,0)0
X has composition length 2. Moreover, it has a simple socle and simple head. On
the other hand, taking the dual of (IT.2]) (a), we obtain a monomorphism

O  M(t,0)%= s M(5,0) 0 X
t;by, >0

in R-mod. Together with (TT.2)) (b), there exists a short exact sequence in R-gmod:
0-¢° @ M(t,0)°" = AMEONIMs, 000X O M(E0) ) -0
t;by, s >0 t;by, s <0
for some ¢ € Z. By Lemma 32218 ¢ must be equal to 1.
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It remains to prove that X commutes with M(k,0) (k # s). For any k € J, we
have

A(M(k,0), X) = A(M(k,0), (5 O)VX) A(M(k,0),M(s,0))
Z A (,0))(—bt’5)—A(M(k’,O),M(S,O))

t; by, s <0
and
A(X,M(K,0)) = A(X V M(s,0), M(k, 0)) — A(M(s, 0), M(k, 0))
> AM(t,0),M(E,0))b; .« — A(M(s,0), M(k, 0)).

t; by, s >0
Hence we have
t; by, s
> A(M(k,()), M(t,()))btvs
t; by, s>0
== ) A(M(E,0), M(t,0))by s
1<t<lr
- 25k s

We conclude that X commutes with M (k,0) if k # s. Thus we complete the proof
of Theorem O

As a corollary, we prove the following conjecture on the cluster monomials.

Theorem 11.2.7 ([1I, Conjecture 12.9], [23] Conjecture 1.1(2)]). Fvery cluster
variable in Ag(n(w)) is a member of the upper global basis up to a power of q'/2.

Theorem also implies [I1, Conjecture 12.7] in the refined form as follows.

Corollary 11.2.8. Z[¢g*'/?] ®Rzqt1] Ag(M(w))zpqx1) has a quantum cluster algebra
structure associated with the initial quantum seed

(] = ({q~ /4D (i,0) }1<i<, L, B);

i.e.,

ZIgF %) @ Agn(w))zge = Sy (7).
Z[qil]
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