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Introduction

The purpose of this paper is to provide a monoidal categorification of the quan-
tum cluster algebra structure on the unipotent quantum coordinate ring Aq(n(w)),
which is associated with a symmetric Kac–Moody algebra g and a Weyl group
element w.

The notion of cluster algebras was introduced by Fomin and Zelevinsky in [6] for
studying total positivity and upper global bases. Since their introduction, a lot of
connections and applications have been discovered in various fields of mathematics
including representation theory, Teichmüller theory, tropical geometry, integrable
systems, and Poisson geometry.

A cluster algebra is a Z-subalgebra of a rational function field given by a set
of generators, called the cluster variables. These generators are grouped into over-
lapping subsets, called the clusters, and the clusters are defined inductively by a
procedure called mutation from the initial cluster {Xi}1≤i≤r, which is controlled

by an exchange matrix B̃. We call a monomial of cluster variables in each cluster
a cluster monomial.

Fomin and Zelevinsky proved that every cluster variable is a Laurent polynomial
of the initial cluster {Xi}1≤i≤r, and they conjectured that this Laurent polynomial
has positive coefficients [6]. This positivity conjecture was proved by Lee and Schif-
fler in the skew-symmetric cluster algebra case in [30]. The linearly independence
conjecture on cluster monomials was proved in the skew-symmetric cluster algebra
case in [4].

The notion of quantum cluster algebras, introduced by Berenstein and Zelevinsky
in [3], can be considered as a q-analogue of cluster algebras. The commutation
relation among the cluster variables is determined by a skew-symmetric matrix L.
As in the cluster algebra case, every cluster variable belongs to Z[q±1/2][X±1

i ]1≤i≤r

[3] and is expected to be an element of Z≥0[q
±1/2][X±1

i ]1≤i≤r, which is referred
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to as the quantum positivity conjecture (cf. [5, Conjecture 4.7]). In [24], Kimura
and Qin proved the quantum positivity conjecture for quantum cluster algebras
containing acyclic seed and specific coefficients.

The unipotent quantum coordinate rings Aq(n) and Aq(n(w)) are examples of
quantum cluster algebras arising from Lie theory. The algebra Aq(n) is a q-
deformation of the coordinate ring C[N ] of the unipotent subgroup and is isomor-
phic to the negative half U−

q (g) of the quantum group as Q(q)-algebras. The algebra
Aq(n(w)) is a Q(q)-subalgebra of Aq(n) generated by a set of the dual Poincaré–
Birkhoff–Witt (PBW) basis elements associated with a Weyl group element w. The
unipotent quantum coordinate ring Aq(n) has a very interesting basis, the so-called
upper global basis (dual canonical basis) Bup, which is dual to the lower global basis
(canonical basis) [16, 31]. The upper global basis has been studied emphasizing its
multiplicative structure. For example, Berenstein and Zelevinsky [2] conjectured
that, in the case g is of type An, the product b1b2 of two elements b1 and b2 in Bup

is again an element of Bup up to a multiple of a power of q if and only if they are
q-commuting; i.e., b1b2 = qmb2b1 for some m ∈ Z. This conjecture turned out to be
not true in general, because Leclerc [29] found examples of an imaginary element
b ∈ Bup such that b2 does not belong to Bup. Nevertheless, the idea of considering
subsets of Bup whose elements are q-commuting with each other and studying the
relations between those subsets has survived, and it became one of the motivations
of the study of (quantum) cluster algebras.

In a series of papers [8,9,11], Geiß, Leclerc, and Schröer showed that the unipo-
tent quantum coordinate ring Aq(n(w)) has a skew-symmetric quantum cluster
algebra structure whose initial cluster consists of the so-called unipotent quantum
minors. In [23], Kimura proved that Aq(n(w)) is compatible with the upper global
basis Bup of Aq(n); i.e., the set Bup(w) := Aq(n(w)) ∩Bup is a basis of Aq(n(w)).
Thus, with a result of [4], one can expect that every cluster monomial of Aq(n(w))
is contained in the upper global basis Bup(w), which is named the quantization
conjecture by Kimura [23].

Conjecture ([11, Conjecture 12.9], [23, Conjecture 1.1(2)]). When g is a sym-
metric Kac–Moody algebra, every quantum cluster monomial in Aq1/2(n(w)) :=

Q(q1/2)⊗Q(q) Aq(n(w)) belongs to the upper global basis Bup up to a power of q1/2.

It can be regarded as a reformulation of Berenstein–Zelevinsky’s ideas on the
multiplicative properties of Bup. There are some partial results of this conjecture.
It is proved for g = A2, A3, A4 and Aq(n(w)) = Aq(n) in [2] and [7, Section 12].

When g = A
(1)
1 , An and w is a square of a Coxeter element, it is shown in [26]

and [27] that the cluster variables belong to the upper global basis. When g is
symmetric and w is a square of a Coxeter element, the conjecture is proved in
[24]. Notably, Qin provided recently a proof of the conjecture for a large class with
a condition on the Weyl group element w [37]. Note that Nakajima proposed a
geometric approach of this conjecture via quiver varieties [35].

In this paper, we prove the above conjecture completely by showing that there
exists a monoidal categorification of Aq1/2(n(w)).

In [12], Hernandez and Leclerc introduced the notion of monoidal categorification
of cluster algebras. A simple object S of a monoidal category C is real if S⊗S is
simple, and it is prime if there exists no nontrivial factorization S � S1⊗S2. They
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say that C is a monoidal categorification of a cluster algebra A if the Grothendieck
ring of C is isomorphic to A and if

(M1) the cluster monomials of A are the classes of real simple objects of C,
(M2) the cluster variables of A are the classes of real simple prime objects of C.
(Note that the above version is weaker than the original definition of the monoidal

categorification in [12].) They proved that certain categories of modules over sym-
metric quantum affine algebras U ′

q(g) give monoidal categorifications of some cluster
algebras. Nakajima extended this result to the cases of the cluster algebras of types
A,D,E [36] (see also [13]). It is worthwhile to remark that once a cluster algebra
A has a monoidal categorification, the positivity of cluster variables of A and the
linear independence of cluster monomials of A follow (see [12, Proposition 2.2]).

In this paper, we refine Hernandez–Leclerc’s notion of monoidal categorifications
including the quantum cluster algebra case. Let us briefly explain it. Let C be
an abelian monoidal category equipped with an auto-equivalence q and a tensor
product which is compatible with a decomposition C =

⊕
β∈Q Cβ . Fix a finite

index set J = Jex � Jfr with a decomposition into the exchangeable part and the

frozen part. Let S be a quadruple ({Mi}i∈J , L, B̃,D) of a family of simple objects
{Mi}i∈J in C , an integer-valued skew-symmetric J × J-matrix L = (λi,j), an

integer-valued J × Jex-matrix B̃ = (bi,j) with a skew-symmetric principal part,
and a family of elements D = {di}i∈J in Q. If this datum satisfies the conditions
in Definition 6.2.1 below, then it is called a quantum monoidal seed in C. For

each k ∈ Jex, we have mutations μk(L), μk(B̃), and μk(D) of L, B̃, and D,

respectively. We say that a quantum monoidal seed S = ({Mi}i∈J , L, B̃,D) admits
a mutation in direction k ∈ Jex if there exists a simple object M ′

k ∈ Cμk(D)k which
fits into two short exact sequences (0.2) below in C reflecting the mutation rule
in quantum cluster algebras, and thus obtained quadruple μk(S ) := ({Mi}i �=k ∪
{M ′

k}, μk(L), μk(B̃), μk(D)) is again a quantum monoidal seed in C. We call μk(S )
the mutation of S in direction k ∈ Jex.

Now the category C is called a monoidal categorification of a quantum cluster
algebra A over Z[q±1/2] if

(i) the Grothendieck ring Z[q±1/2]⊗Z[q±1] K(C) is isomorphic to A,

(ii) there exists a quantum monoidal seed S = ({Mi}i∈J , L, B̃,D)

in C such that [S ] := ({qmi [Mi]}i∈J , L, B̃) is a quantum seed of
A for some mi ∈ 1

2Z,
(iii) S admits successive mutations in all directions in Jex.

(0.1)

The existence of monoidal category C which provides a monoidal categorification
of quantum cluster algebra A implies the following:

(QM1) Every quantum cluster monomial corresponds to the isomorphism class
of a real simple object of C. In particular, the set of quantum cluster
monomials is Z[q±1/2]-linearly independent.

(QM2) The quantum positivity conjecture holds for A.

In the case of unipotent quantum coordinate ring Aq(n), there is a natural
candidate for monoidal categorification, the category of finite-dimensional graded
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modules over a Khovanov–Lauda–Rouquier algebras ([21,22], [38]). The Khovanov–
Lauda–Rouquier algebras (abbreviated by KLR algebras), introduced by Khovanov–
Lauda [21, 22] and Rouquier [38] independently, are a family of Z-graded
algebras which categorifies the negative half U−

q (g) of a symmetrizable quantum
group Uq(g). More precisely, there exists a family of algebras {R(−β)}β∈Q− such
that the Grothendieck ring of R-gmod :=

⊕
β∈Q− R(−β)-gmod, the direct sum of

the categories of finite-dimensional graded R(−β)-modules, is isomorphic to the
integral form Aq(n)Z[q±1] of Aq(n) � U−

q (g). Here the tensor functor ⊗ of the
monoidal category R-gmod is given by the convolution product ◦, and the action of
q is given by the grading shift functor. In [39,40], Varagnolo–Vasserot and Rouquier
proved that the upper global basis Bup of Aq(n) corresponds to the set of the iso-
morphism classes of all self-dual simple modules of R-gmod under the assumption
that R is associated with a symmetric quantum group Uq(g) and the base field is
of characteristic 0.

Combining works of [11,23,40], the unipotent quantum coordinate ring Aq(n(w))
associated with a symmetric quantum group Uq(g) and a Weyl group element w is
isomorphic to the Grothendieck group of a monoidal abelian full subcategory Cw of
R-gmod whose base field k is of characteristic 0, satisfying the following properties:
(i) Cw is stable under extensions and grading shift functor, (ii) the composition
factors of M ∈ Cw are contained in Bup(w) (see Definition 11.2.1). In particular,
the first condition in (0.1) holds. However, it is not evident that the second and
the third conditions in (0.1) on quantum monoidal seeds are satisfied. The purpose
of this paper is to ensure that those conditions hold in Cw.

In order to establish it, in the first part of the paper, we start with a continuation
of the work of [15] about the convolution products, heads, and socles of graded
modules over symmetric KLR algebras. One of the main results in [15] is that the
convolution product M ◦ N of a real simple R(β)-module M and a simple R(γ)-
module N has a unique simple quotient and a unique simple submodule. Moreover,
if M ◦N � N ◦M up to a grading shift, then M ◦N is simple. In such a case we say
that M and N commute. The main tool of [15] was the R-matrix r

M,N
, constructed

in [14], which is a homogeneous homomorphism from M ◦ N to N ◦M of degree
Λ(M,N). In this work, we define some integers encoding necessary information on
M ◦N ,

Λ̃(M,N) :=
1

2

(
Λ(M,N) + (β, γ)

)
, d(M,N) :=

1

2

(
Λ(M,N) + Λ(N,M)

)
,

and study the representation theoretic meaning of the integers Λ(M,N), Λ̃(M,N),
and d(M,N).

We then prove Leclerc’s first conjecture [29] on the multiplicative structure of
elements in Bup, when the generalized Cartan matrix is symmetric (Theorem 4.1.1
and Theorem 4.2.1). Theorem 4.2.1 is due to McNamara [34, Lemma 7.5], and the
authors thank him for informing us of his result.

We say that b ∈ Bup is real if b2 ∈ qZ Bup :=
⊔

n∈Z q
nBup.

Theorem ([29, Conjecture 1]). Let b1 and b2 be elements in Bup such that one of
them is real and b1b2 	∈ qZBup. Then the expansion of b1b2 with respect to Bup is
of the form

b1b2 = qmb′ + qsb′′ +
∑

c�=b′,b′′

γc
b1,b2(q)c,
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where b′ 	= b′′, m, s ∈ Z, m < s, and

γc
b1,b2(q) ∈ qm+1Z[q] ∩ qs−1Z[q−1].

More precisely, we prove that qmb′ and qsb′′ correspond to the simple head and
the simple socle of M ◦ N , respectively, when b1 corresponds to a simple module
M and b2 corresponds to a simple module N .

Next, we move to provide an algebraic framework for monoidal categorification of
quantum cluster algebras. In order to simplify the conditions of quantum monoidal
seeds and their mutations, we introduce the notion of admissible pairs in Cw. A

pair ({Mi}i∈J , B̃) is called admissible in Cw if (i) {Mi}i∈J is a commuting family of

self-dual real simple objects of Cw, (ii) B̃ is an integer-valued J × Jex-matrix with
a skew-symmetric principal part, and (iii) for each k ∈ J , there exists a self-dual
simple object M ′

k in Cw such that M ′
k commutes with Mi for all i ∈ J \ {k} and

there are exact sequences in Cw

0 → q
⊙

bi,k>0

M
�bi,k
i → qΛ̃(Mk,M

′
k)Mk ◦M ′

k →
⊙

bi,k<0

M
�(−bi,k)
i → 0,

0 → q
⊙

bi,k<0

M
�(−bi,k)
i → qΛ̃(M ′

k,Mk)M ′
k ◦Mk →

⊙
bi,k>0

M
�bi,k
i → 0,

(0.2)

where Λ̃(Mk,M
′
k) and Λ̃(M ′

k,Mk) are prescribed integers and
⊙

is a convolution
product up to a power of q.

For an admissible pair ({Mi}i∈J , B̃), let Λ = (Λi,j)i,j∈J be the skew-symmetric
matrix where Λi,j is the homogeneous degree of r

Mi,Mj
, the R-matrix between

Mi and Mj , and let D = {di}i∈J be the family of elements in Q given by Mi ∈
R(−di)-gmod.

Then, together with the result of [11], our main theorem in the first part of the
paper reads as follows.

Main Theorem 1 (Theorem 7.1.3 and Corollary 7.1.4). If there exists an admis-

sible pair ({Mi}i∈K , B̃) in Cw such that [S ] :=
(
{q−(wt(Mi),wt(Mi))/4[Mi]}i∈J ,−Λ,

B̃,D
)
is an initial seed of Aq1/2(n(w)), then Cw is a monoidal categorification of

Aq1/2(n(w)).

The second part of this paper (Sections 8–11) is mainly devoted to showing that
there exists an admissible pair in Cw for every symmetric Kac–Moody algebra g and
its Weyl group element w. In [11], Geiß, Leclerc, and Schröer provided an initial
quantum seed in Aq(n(w)) whose quantum cluster variables are unipotent quantum
minors. The unipotent quantum minors are elements in Aq(n), which are regarded
as a q-analogue of a generalization of the minors of upper triangular matrices. In
particular, they are elements in Bup. We define the determinantial module M(μ, ζ)
to be the simple module in R-gmod corresponding to the unipotent quantum minor
D(μ, ζ) under the isomorphism Aq(n)Z[q±1] � K(R-gmod). Here (μ, ζ) is a pair of
elements in the weight lattice of g satisfying certain conditions.

Our main theorem of the second part is as follows.

Main Theorem 2 (Theorem 11.2.2). Let ({D(k, 0)}1≤k≤r, B̃, L) be the initial
quantum seed of Aq(n(w)) in [11] with respect to a reduced expression w̃ = sir · · · si1
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of w. Let M(k, 0) := M(si1 · · · sik�ik , �ik) be the determinantial module correspond-
ing to the unipotent quantum minor D(k, 0). Then the pair

({M(k, 0)}1≤k≤r, B̃)

is admissible in Cw.

Combining these theorems, the category Cw gives a monoidal categorification of
the quantum cluster algebra Aq(n(w)). If we take the base field of the symmetric
KLR algebra to be of characteristic 0, these theorems, along with Theorem 2.1.4
due to [39, 40], imply the quantization conjecture.

The most essential condition for an admissible pair is that there exists the first
mutation M(k, 0)′ in the exact sequences (0.2) for each k ∈ Jex. To establish
this, we investigate the properties of determinantial modules and those of their
convolution products. Note that a unipotent quantum minor is the image of a global
basis element of the quantum coordinate ring Aq(g) under a natural projection
Aq(g) → Aq(n). Since there exists a bicrystal embedding from the crystal basis

B(Aq(g)) of Aq(g) to the crystal basis B(Ũq(g)) of the modified quantum groups

Ũq(g), this investigation amounts to the study of the interplay among the crystal

and global bases of Aq(g), Ũq(g), and Aq(n). Hence we start the second part of the
paper with the studies of those algebras and their crystal/global bases along the
line of the works in [17–19].

Next, we recall the (unipotent) quantum minors and the T-system, an equation
consisting of three terms in products of unipotent quantum minors studied in [3,11].

A detailed study of the relation between Aq(g), Ũq(g), and Aq(n) and their global
bases enables us to establish several equations involving unipotent quantum minors
in the algebraAq(n). The upshot is that those equations can be translated into exact
sequences in the category R-gmod involving convolution products of determinantial
modules via the categorification of U−

q (g). It enables us to show that the pair

({M(k, 0)}1≤k≤r, B̃) is admissible.
The paper is organized as follows. In Section 1, we briefly review basic materials

on quantum group Uq(g) and KLR algebra R. In Section 2, we continue the study in
[15] of the R-matrices between R-modules. In Section 3, we derive certain properties

of Λ̃(M,N) and d(M,N). In Section 4, we prove the first conjecture of Leclerc in
[29]. In Section 5, we recall the definition of quantum cluster algebras. In Section
6, we give the definitions of a monoidal seed, a quantum monoidal seed, a monoidal
categorification of a cluster algebra, and a monoidal categorification of a quantum
cluster algebra. In Section 7, we prove Main Theorem 1. In Section 8, we review the

algebras Aq(g), Ũq(g), and Aq(n), and study the relations among them. In Section
9, we study the properties of quantum minors including T -systems and generalized
T -systems. In Section 10, we study the determinantial modules over KLR algebras.
Finally, in Section 11, we establish Main Theorem 2.

1. Quantum groups and global bases

In this section, we briefly recall the quantum groups and the crystal and global
bases theory for Uq(g). We refer to [16, 17, 20] for materials in this subsection.
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1.1. Quantum groups. Let I be an index set. A Cartan datum is a quintuple
(A,P,Π,P∨,Π∨) consisting of

(i) an integer-valued matrix A = (aij)i,j∈I , called the symmetrizable general-
ized Cartan matrix, which satisfies
(a) aii = 2 (i ∈ I),
(b) aij ≤ 0 (i 	= j),
(c) there exists a diagonal matrix D = diag(si | i ∈ I) such that DA is

symmetric, and si are relatively prime positive integers,
(ii) a free abelian group P, called the weight lattice,
(iii) Π = {αi ∈ P | i ∈ I}, called the set of simple roots,
(iv) P∨ := HomZ(P,Z), called the co-weight lattice,
(v) Π∨ = {hi | i ∈ I} ⊂ P∨, called the set of simple coroots, satisfying the

following properties:
(1) 〈hi, αj〉 = aij for all i, j ∈ I,
(2) Π is linearly independent over Q,
(3) for each i ∈ I, there exists �i ∈ P such that 〈hj , �i〉 = δij for all

j ∈ I.
We call �i the fundamental weights.

The free abelian group Q :=
⊕
i∈I

Zαi is called the root lattice. Set Q+ =
∑

i∈I Z≥0

αi ⊂ Q and Q−=
∑

i∈I Z≤0αi ⊂ Q. For β=
∑

i∈I miαi ∈ Q, we set |β|=
∑

i∈I |mi|.
Set h = Q ⊗Z P∨. Then there exists a symmetric bilinear form ( , ) on h∗

satisfying

(αi, αj) = siaij (i, j ∈ I) and 〈hi, λ〉 =
2(αi, λ)

(αi, αi)
for any λ ∈ h∗ and i ∈ I.

The Weyl group of g is the group of linear transformations on h∗ generated by
si (i ∈ I), where

si(λ) := λ− 〈hi, λ〉αi for λ ∈ h∗, i ∈ I.

Let q be an indeterminate. For each i ∈ I, set qi = q si .

Definition 1.1.1. The quantum group associated with a Cartan datum (A,P,Π,
P∨,Π∨) is the algebra Uq(g) over Q(q) generated by ei, fi (i ∈ I) and qh (h ∈ P∨)
satisfying the following relations:

q0 = 1, qhqh
′
= qh+h′

for h, h′ ∈ P∨,

qheiq
−h = q〈h,αi〉ei, qhfiq

−h = q−〈h,αi〉fi for h ∈ P∨, i ∈ I,

eifj − fjei = δij
ti − t−1

i

qi − q−1
i

, where ti = qsihi ,

1−aij∑
r=0

(−1)r
[
1− aij

r

]
i

e
1−aij−r
i eje

r
i = 0 if i 	= j,

1−aij∑
r=0

(−1)r
[
1− aij

r

]
i

f
1−aij−r
i fjf

r
i = 0 if i 	= j.

Here, we set [n]i =
qni − q−n

i

qi − q−1
i

, [n]i! =
∏n

k=1[k]i, and

[
m
n

]
i

=
[m]i!

[m− n]i![n]i!
for

i ∈ I and m,n ∈ Z≥0 such that m ≥ n.
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Let U+
q (g) (resp. U−

q (g)) be the subalgebra of Uq(g) generated by ei’s (resp. fi’s),

and let U0
q (g) be the subalgebra of Uq(g) generated by qh (h ∈ P∨). Then we have

the triangular decomposition

Uq(g) � U−
q (g)⊗ U0

q (g)⊗ U+
q (g),

and the weight space decomposition

Uq(g) =
⊕
β∈Q

Uq(g)β,

where Uq(g)β :=
{
x ∈ Uq(g) | qhxq−h = q〈h,β〉x for any h ∈ P

}
.

There are Q(q)-algebra antiautomorphisms ϕ and ∗ of Uq(g) given as follows:

ϕ(ei) = fi, ϕ(fi) = ei, ϕ(qh) = qh,

e∗i = ei, f∗
i = fi, (qh)∗ = q−h.

There is also a Q-algebra automorphism of Uq(g) given by

ei = ei, f i = fi, qh = q−h, q = q−1.

We define the divided powers by

e
(n)
i = eni /[n]i!, f

(n)
i = fn

i /[n]i! (n ∈ Z≥0).

Let us denote by Uq(g)Z[q±1] the Z[q
±1]-subalgebra of Uq(g) generated by e

(n)
i , f

(n)
i ,

qh, and

n∏
k=1

{q1−kqh}
[k]

(i ∈ I, n ∈ Z≥0, h ∈ P∨), where {x} := (x−x−1)/(q− q−1).

Let us also denote by U−
q (g)Z[q±1] the Z[q

±1]-subalgebra of U−
q (g) generated by f

(n)
i

(i ∈ I, n ∈ Z≥0), and by U+
q (g)Z[q±1] the Z[q±1]-subalgebra of U+

q (g) generated by

e
(n)
i (i ∈ I, n ∈ Z≥0).

1.2. Integrable representations. A Uq(g)-module M is called integrable if M =⊕
η∈P Mη where Mη := {m ∈ M | qhm = q〈h,η〉m}, dimMη < ∞, and the

actions of ei and fi on M are locally nilpotent for all i ∈ I. We denote by
Oint(g) the category of integrable left Uq(g)-modules M satisfying that there ex-
ist finitely many weights λ1, . . . , λm such that wt(M) ⊂ ∪j(λj + Q−). The
category Oint(g) is semisimple with its simple objects being isomorphic to the
highest weight modules V (λ) with highest weight vector uλ of highest weight
λ ∈ P+ := {μ ∈ P | 〈hi, μ〉 ≥ 0 for all i ∈ I}, the set of dominant integral weights.

For M ∈ Oint(g), let us denote by DϕM the left Uq(g)-module⊕
η∈P HomQ(q)(Mη,Q(q)) with the action of Uq(g) given by

(aψ)(m) = ψ(ϕ(a)m) for ψ ∈ DϕM , m ∈ M , and a ∈ Uq(g).

Then DϕM belongs to Oint(g).
For a left Uq(g)-module M , we denote by M r the right Uq(g)-module {mr | m ∈

M} with the right action of Uq(g) given by

(mr) x = (ϕ(x)m)r for m ∈ M and x ∈ Uq(g).

We denote by Or
int(g) the category of right integrable Uq(g)-modules M r such that

M ∈ Oint(g).
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There are two comultiplications Δ+ and Δ− on Uq(g) defined as follows:

Δ+(ei) = ei ⊗ 1 + ti ⊗ ei, Δ+(fi) = fi ⊗ t−1
i + 1⊗ fi, Δ+(q

h) = qh ⊗ qh,

(1.1)

Δ−(ei) = ei ⊗ t−1
i + 1⊗ ei, Δ−(fi) = fi ⊗ 1 + ti ⊗ fi, Δ−(q

h) = qh ⊗ qh.

(1.2)

For two Uq(g)-modules M1 and M2, let us denote by M1 ⊗+
M2 and M1 ⊗− M2

the vector space M1 ⊗Q(q) M2 endowed with Uq(g)-module structure induced by the
comultiplications Δ+ and Δ−, respectively. Then we have

Dϕ(M1 ⊗± M2) � (DϕM1)⊗∓ (DϕM2).

For any i ∈ I, there exists a unique Q(q)-linear endomorphism e′i of U
−
q (g) such

that

e′i(fj) = δi,j (j ∈ I), e′i(xy) = (e′ix)y + q
〈hi,β〉
i x(e′iy) (x ∈ U−

q (g)β, y ∈ U−
q (g)).

The quantum boson algebra Bq(g) is defined as the subalgebra of EndQ(q)(Uq(g))
generated by fi and e′i (i ∈ I). Then Bq(g) has a Q(q)-algebra anti-automorphism
ϕ which sends e′i to fi and fi to e′i. As a Bq(g)-module, U−

q (g) is simple.

The simple Uq(g)-module V (λ) and the simple Bq(g)-module U−
q (g) have a

unique non-degenerate symmetric bilinear form ( , ) such that

(uλ, uλ) = 1 and (xu, v) = (u, ϕ(x)v) for u, v ∈ V (λ) and x ∈ Uq(g),

(1,1) = 1 and (xu, v) = (u, ϕ(x)v) for u, v ∈ U−
q (g) and x ∈ Bq(g).

Note that ( , ) induces the non-degenerate bilinear form

〈·, ·〉 : V (λ)r × V (λ) → Q(q)

given by 〈ur, v〉 = (u, v), by which DϕV (λ) is canonically isomorphic to V (λ).

1.3. Crystal bases and global bases. For a subring A of Q(q), we say that L
is an A-lattice of a Q(q)-vector space V if L is a free A-submodule of V such that
V = Q(q)⊗A L.

Let us denote by A0 (resp. A∞) the ring of rational functions in Q(q) which are
regular at q = 0 (resp. q = ∞). Set A :=Q[q±1].

Let M be a Uq(g)-module in Oint(g). Then, for each i ∈ I, any u ∈ M can be
uniquely written as

u =
∑
n≥0

f
(n)
i un with eiun = 0.

We define the lower Kashiwara operators by

ẽlowi (u) =
∑
n≥1

f
(n−1)
i un and f̃ low

i (u) =
∑
n≥0

f
(n+1)
i un,

and the upper Kashiwara operators by

ẽupi (u) = ẽlowi q−1
i t−1

i u and f̃up
i (u) = f̃ low

i q−1
i tiu.

Similarly, for each i ∈ I, any element x ∈ U−
q (g) can be written uniquely as

x =
∑
n≥0

f
(n)
i xn with e′ixn = 0.
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We define the Kashiwara operators ẽi, f̃i on U−
q (g) by

ẽix =
∑
n≥1

f
(n−1)
i xn, f̃ix =

∑
n≥0

f
(n+1)
i xn.

We say that an A0-lattice L of M is a lower (resp. upper) crystal lattice of M
if L =

⊕
η∈P

Lη, where Lη = L ∩ Mη and it is invariant by the lower (resp. upper)

Kashiwara operators.

Lemma 1.3.1. Let L be a lower crystal lattice of M ∈ Oint(g). Then we have

(i)
⊕

λ∈P q
−(λ,λ)/2Lλ is an upper crystal lattice of M .

(ii) L∨ := {ψ ∈ DϕM | 〈ψ,L〉 ∈ A0} is an upper crystal lattice of DϕM .

Proof. (i) Let φM be the endomorphism of M given by φM |Mλ
= q−(λ,λ)/2 idMλ

.

Then we have ẽupi = φM ◦ ẽlowi ◦ φ−1
M and f̃up

i = φM ◦ f̃ low
i ◦ φ−1

M .
Item (ii) follows from (3.2.1), (3.2.2) in [17]. Note that the definition of up-

per Kashiwara operators are slightly different from the ones in [17], but similar
properties hold. �

Definition 1.3.2. A lower (resp. upper) crystal basis of M consists of a pair (L,B)
satisfying the following conditions:

(i) L is a lower (resp. upper) crystal lattice of M ,
(ii) B = �η∈PBη is a basis of the Q-vector space L/qL, where Bη = B ∩

(Lη/qLη),

(iii) the induced maps ẽi and f̃i on L/qL satisfy

ẽiB, f̃iB ⊂ B � {0}, and f̃ib = b′ if and only if b = ẽib
′ for b, b′ ∈ B.

Here ẽi and f̃i denote the lower (resp. upper) Kashiwara operators.

For λ ∈ P+, let uλ be the highest weight vector of V (λ). Let Llow(λ) be the

A0-submodule of V (λ) generated by
{
f̃i1 · · · f̃iluλ | l ∈ Z≥0, i1, . . . , il ∈ I

}
, and let

B(λ) be the subset of Llow(λ)/qLlow(λ) given by

Blow(λ) =
{
f̃i1 · · · f̃iluλ mod qL(λ) | l ∈ Z≥0, i1, . . . , il ∈ I

}
\{0}.

It is shown in [16] that (Llow(λ), Blow(λ)) is a lower crystal basis of V (λ). Using
the non-degenerate symmetric bilinear form ( , ), V (λ) has the upper crystal basis
(Lup(λ), Bup(λ)) where

Lup(λ) := {u ∈ V (λ) | (u, Llow(λ)) ⊂ A0},
and Bup(λ) ⊂ Lup(λ)/qLup(λ) is the dual basis of Blow(λ) with respect to the
induced non-degenerate pairing between Lup(λ)/qLup(λ) and Llow(λ)/qLlow(λ).

An (abstract) crystal is a set B together with maps

wt: B → P, εi, ϕi : B → Z � {∞} and ẽi, f̃i : B → B � {0} for i ∈ I,

such that

(C1) ϕi(b) = εi(b) + 〈hi,wt(b)〉 for any i,
(C2) if b ∈ B satisfies ẽi(b) 	= 0, then

εi(ẽib) = εi(b)− 1, ϕi(ẽib) = ϕi(b) + 1, wt(ẽib) = wt(b) + αi,
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(C3) if b ∈ B satisfies f̃i(b) 	= 0, then

εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)− 1, wt(f̃ib) = wt(b)− αi,

(C4) for b, b′ ∈ B, b′ = f̃ib if and only if b = ẽib
′,

(C5) if ϕi(b) = −∞, then ẽib = f̃ib = 0.

Recall that, with the notions of morphism and tensor product rule of crystals,
the category of crystals becomes a monoidal category [19]. If (L,B) is a crystal
basis of M , then B is an abstract crystal. Since Blow(λ) � Bup(λ), we drop the
superscripts for simplicity.

Let V be a Q(q)-vector space, and let L0 be an A0-lattice of V , L∞ an A∞-
lattice of V , and VA an A-lattice of V . We say that the triple (VA, L0, L∞) is
balanced if the following canonical map is a Q-linear isomorphism:

E := VA ∩ L0 ∩ L∞ ∼−−→L0/qL0.

The inverse of the above isomorphism G : L0/qL0
∼−−→E is called the globalizing

map. If (VA, L0, L∞) is balanced, then we have

Q(q)⊗
Q
E ∼−−→V , A⊗

Q
E ∼−−→VA, A0 ⊗

Q
E ∼−−→L0, and A∞ ⊗

Q
E ∼−−→L∞.

Hence, if B is a basis of L0/qL0, then G(B) is a basis of V , VA, L0, and L∞. We
call G(B) a global basis.

We define the two A-lattices of V (λ) by

V low(λ)A :=
(
Q⊗U−

q (g)Z[q±1]

)
uλ and

V up(λ)A :=
{
u ∈ V (λ) |

(
u, V low(λ)A

)
⊂ A

}
.

Recall that there is a Q-linear automorphism—on V (λ) defined by

Puλ = Puλ, for P ∈ Uq(g).

Then
(
V low(λ)A, Llow(λ), Llow(λ)

)
and

(
V up(λ)A, Lup(λ), Lup(λ)

)
are balanced.

Let us denote by Glow
λ and Gup

λ the associated globalizing maps, respectively. (If

there is no danger of confusion, we simply denote them Glow and Gup, respectively.)
Then the sets

Blow(λ) := {Glow
λ (b) | b ∈ Blow(λ)} and Bup(λ) := {Gup

λ (b) | b ∈ Bup(λ)}

form Z[q±1]-bases of

V low(λ)Z[q±1] := Uq(g)Z[q±1]uλ and

V up(λ)Z[q±1] :=
{
u ∈ V (λ) |

(
u, V low(λ)Z[q±1]

)
⊂ Z[q±1]

}
,

respectively. They are called the lower global basis and the upper global basis of
V (λ).

Set

L(∞) :=
∑

l∈Z≥0, i1,...,il∈I

A0f̃i1 · · · f̃il · 1 ⊂ U−
q (g) and

B(∞) :=
{
f̃i1 · · · f̃il · 1 mod qL(∞) | l ∈ Z≥0, i1, . . . , il ∈ I

}
⊂L(∞)/qL(∞).
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Then (L(∞), B(∞)) is a lower crystal basis of the simple Bq(g)-module U−
q (g) and

the triple (Q⊗U−
q (g)Z[q±1], L(∞), L(∞)) is balanced. Let us denote the globalizing

map by Glow. Then the set

Blow(U−
q (g)) := {Glow(b) | b ∈ B(∞)}

forms a Z[q±1]-basis of U−
q (g)Z[q±1] and is called the lower global basis of U−

q (g).
Let us denote by

Bup(U−
q (g)) := {Gup(b) | b ∈ B(∞)}(1.3)

the dual basis of Blow(U−
q (g)) with respect to ( , ). Then it is a Z[q±1]-basis of

U−
q (g)∨Z[q±1] := {x ∈ U−

q (g) | (x, U−
q (g)Z[q±1]) ⊂ Z[q±1]}

and called the upper global basis of U−
q (g). Note that U−

q (g)∨
Z[q±1] has a Z[q±1]-

algebra structure as a subalgebra of U−
q (g) (see also Section 8.2).

2. KLR algebras and R-matrices

2.1. KLR algebras. We recall the definition of Khovanov–Lauda–Rouquier alge-
bra or quiver Hecke algebra (hereafter, we abbreviate it as KLR algebra) associated
with a given Cartan datum (A,P,Π,P∨,Π∨).

Let k be a base field. For i, j ∈ I such that i 	= j, set

Si,j =
{
(p, q) ∈ Z2

≥0 | (αi, αi)p+ (αj , αj)q = −2(αi, αj)
}
.

Let us take a family of polynomials (Qij)i,j∈I in k[u, v] which are of the form

Qij(u, v) =

⎧⎪⎨⎪⎩
0 if i = j,∑

(p,q)∈Si,j

ti,j;p,qu
pvq if i 	= j

with ti,j;p,q ∈ k such that Qi,j(u, v) = Qj,i(v, u) and ti,j:−aij ,0 ∈
k×.

(2.1)

We denote by Sn = 〈s1, . . . , sn−1〉 the symmetric group on n letters, where
si := (i, i + 1) is the transposition of i and i + 1. Then Sn acts on In by place
permutations.

For n ∈ Z≥0 and β ∈ Q+ such that |β| = n, we set

Iβ = {ν = (ν1, . . . , νn) ∈ In | αν1
+ · · ·+ ανn

= β} .

Definition 2.1.1. For β ∈ Q+ with |β| = n, the KLR algebra R(β) at β associated
with a Cartan datum (A,P,Π,P∨,Π∨) and a matrix (Qij)i,j∈I is the algebra over
k generated by the elements {e(ν)}ν∈Iβ , {xk}1≤k≤n, {τm}1≤m≤n−1 satisfying the
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following defining relations:

e(ν)e(ν′) = δν,ν′e(ν),
∑
ν∈Iβ

e(ν) = 1,

xkxm = xmxk, xke(ν) = e(ν)xk,

τme(ν) = e(sm(ν))τm, τkτm = τmτk if |k −m| > 1,

τ2ke(ν) = Qνk,νk+1
(xk, xk+1)e(ν),

(τkxm − xsk(m)τk)e(ν) =

⎧⎪⎨⎪⎩
−e(ν) if m = k, νk = νk+1,

e(ν) if m = k + 1, νk = νk+1,

0 otherwise,

(τk+1τkτk+1 − τkτk+1τk)e(ν)

=

⎧⎨⎩
Qνk,νk+1

(xk, xk+1)−Qνk,νk+1
(xk+2, xk+1)

xk − xk+2
e(ν) if νk = νk+2,

0 otherwise.

The above relations are homogeneous provided that

deg e(ν) = 0, deg xke(ν) = (ανk
, ανk

), deg τle(ν) = −(ανl
, ανl+1

),

and hence R(β) is a Z-graded algebra.
For a graded R(β)-module M =

⊕
k∈Z Mk, we define qM =

⊕
k∈Z(qM)k, where

(qM)k = Mk−1 (k ∈ Z).

We call q the grading shift functor on the category of graded R(β)-modules.
If M is an R(β)-module, then we set wt(M) = −β ∈ Q− and call it the weight

of M .
We denote by R(β)-Mod the category of R(β)-modules, and by R(β)-mod the

full subcategory of R(β)-Mod consisting of modules M such that M are finite-
dimensional over k, and the actions of the xk’s on M are nilpotent.

Similarly, we denote by R(β)-gMod and by R(β)-gmod the category of graded
R(β)-modules and the category of graded R(β)-modules which are finite-dimensional
over k, respectively. We set

R-gmod =
⊕

β∈Q+

R(β)-gmod and R-mod =
⊕

β∈Q+

R(β)-mod.

For β, γ ∈ Q+ with |β| = m, |γ| = n, set

e(β, γ) =
∑

ν∈Iβ+γ ,

(ν1,...,νm)∈Iβ ,
(νm+1,...,νm+n)∈Iγ

e(ν) ∈ R(β + γ).

Then e(β, γ) is an idempotent. Let

R(β)⊗R(γ) → e(β, γ)R(β + γ)e(β, γ)

be the k-algebra homomorphism given by e(μ)⊗ e(ν) �→ e(μ ∗ ν) (μ ∈ Iβ and
ν ∈ Iγ) xk ⊗ 1 �→ xke(β, γ) (1 ≤ k ≤ m), 1⊗xk �→ xm+ke(β, γ) (1 ≤ k ≤ n),
τk ⊗ 1 �→ τke(β, γ) (1 ≤ k < m), and 1⊗ τk �→ τm+ke(β, γ) (1 ≤ k < n). Here μ ∗ ν
is the concatenation of μ and ν; i.e., μ ∗ ν = (μ1, . . . , μm, ν1, . . . , νn).
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For an R(β)-moduleM and an R(γ)-moduleN , we define the convolution product
M ◦N by

M ◦N = R(β + γ)e(β, γ) ⊗
R(β)⊗R(γ)

(M ⊗N).

For M ∈ R(β)-mod, the dual space

M∗ := Homk(M,k)

admits an R(β)-module structure via

(r · f)(u) := f(ψ(r)u) (r ∈ R(β), u ∈ M),

where ψ denotes the k-algebra anti-involution on R(β) which fixes the generators
e(ν), xm, and τk for ν ∈ Iβ, 1 ≤ m ≤ |β|, and 1 ≤ k < |β|.

It is known that (see [28, Theorem 2.2 (2)])

(M1 ◦M2)
∗ � q(β,γ)(M∗

2 ◦M∗
1 )

for any M1 ∈ R(β)-gmod and M2 ∈ R(γ)-gmod.
A simple module M in R-gmod is called self-dual if M∗ � M . Every simple

module is isomorphic to a grading shift of a self-dual simple module [21, Section 3.2].
Note also that we have EndR(β)M � k for every simple module M in R(β)-gmod
[21, Corollary 3.19].

Let us denote by K(R-gmod) the Grothendieck group of R-gmod. Then,
K(R-gmod) is an algebra over Z[q±1] with the multiplication induced by the con-
volution product and the Z[q±1]-action induced by the grading shift functor q.

In [21, 38], it is shown that a KLR algebra categorifies the negative half of the
corresponding quantum group. More precisely, we have the following theorem.

Theorem 2.1.2 ([21, 38]). For a given Cartan datum (A,P,Π,P∨,Π∨), we take
a parameter matrix (Qij)i,j∈J satisfying the conditions in (2.1), and let Uq(g) and
R(β) be the associated quantum group and the KLR algebras, respectively. Then
there exists a Z[q±1]-algebra isomorphism

U−
q (g)∨Z[q±1] � K(R-gmod).(2.2)

KLR algebras also categorify the upper global bases.

Definition 2.1.3. We say that a KLR algebra R is symmetric if Qi,j(u, v) is a
polynomial in u− v for all i, j ∈ I.

In particular, the corresponding generalized Cartan matrix A is symmetric. In
symmetric case, we assume (αi, αi) = 2 for i ∈ I.

Theorem 2.1.4 ([39, 40]). Assume that the KLR algebra R is symmetric and the
base field k is of characteristic 0. Then under the isomorphism (2.2) in Theo-
rem 2.1.2, the upper global basis corresponds to the set of the isomorphism classes
of self-dual simple R-modules.

2.2. R-matrices for KLR algebras.
For |β| = n and 1 ≤ a < n, we define ϕa ∈ R(β) by

ϕae(ν) =

⎧⎨⎩
(
τaxa − xaτa

)
e(ν) if νa = νa+1,

τae(ν) otherwise.

They are called the intertwiners. Since {ϕa}1≤a<n satisfies the braid relation,
ϕw :=ϕi1 · · ·ϕi� does not depend on the choice of reduced expression w = si1 · · · si� .
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For m,n ∈ Z≥0, let us denote by w[m,n] the element of Sm+n defined by

w[m,n](k) =

{
k + n if 1 ≤ k ≤ m,

k −m if m < k ≤ m+ n.

Let β, γ ∈ Q+ with |β| = m, |γ| = n, and let M be an R(β)-module and N an
R(γ)-module. Then the map M ⊗N → N ◦M given by u⊗ v �−→ ϕw[n,m](v⊗u)
is R(β)⊗R(γ)-linear, and hence it extends to an R(β+ γ)-module homomorphism

RM,N : M ◦N −−→ N ◦M.

Assume that the KLR algebra R(β) is symmetric. Let z be an indeterminate
which is homogeneous of degree 2, and let ψz be the graded algebra homomorphism

ψz : R(β) → k[z]⊗R(β)

given by

ψz(xk) = xk + z, ψz(τk) = τk, ψz(e(ν)) = e(ν).

For an R(β)-module M , we denote by Mz the
(
k[z]⊗R(β)

)
-module k[z]⊗M

with the action of R(β) twisted by ψz. Namely,

e(ν)(a⊗u) = a⊗ e(ν)u,

xk(a⊗u) = (za)⊗u+ a⊗(xku),

τk(a⊗u) = a⊗(τku)

for ν ∈ Iβ , a ∈ k[z], and u ∈ M . Note that the multiplication by z on k[z] induces
an R(β)-module endomorphism on Mz. For u ∈ M , we sometimes denote by uz

the corresponding element 1⊗u of the R(β)-module Mz.
For a non-zero M ∈ R(β)-mod and a non-zero N ∈ R(γ)-mod,

let s be the order of zero of RMz,N : Mz ◦ N −−→ N ◦ Mz; i.e., the
largest non-negative integer such that the image of RMz,N is contained
in zs(N ◦Mz).

(2.3)

Note that such an s exists because RMz ,N does not vanish [14, Proposition 1.4.4
(iii)]. We denote by Rren

Mz,N
the morphism z−sRMz,N .

Definition 2.2.1. Assume that R(β) is symmetric. For a non-zero M ∈ R(β)-mod
and a non-zero N ∈ R(γ)-mod, let s be an integer as in (2.3). We define

r
M,N

: M ◦N → N ◦M

by

r
M,N

= Rren
Mz,N |z=0,

and call it the renormalized R-matrix.

By the definition, the renormalized R-matrix r
M,N

never vanishes.

We define also

r
N,M

: N ◦M → M ◦N

by

r
N,M

=
(
(−z)−tRN,Mz

)
|z=0,

where t is the order of zero of RN,Mz
.

If R(β) and R(γ) are symmetric, then s coincides with the order of zero of RM,Nz
,

and
(
z−sRMz,N

)
|z=0 =

(
(−z)−sRM,Nz

)
|z=0 (see [15, (1.11)]).
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By the construction, if the composition (N1◦rM,N2
)◦(r

M,N1
◦N2) forM,N1, N2 ∈

R-mod does not vanish, then it is equal to r
M,N1◦N2

.

Definition 2.2.2. A simple R(β)-module M is called real if M ◦M is simple.

The following lemma was used significantly in [15].

Lemma 2.2.3 ([15, Lemma 3.1]). Let βk ∈ Q+ and Mk ∈ R(βk)-mod (k = 1, 2, 3).
Let X be an R(β1 + β2)-submodule of M1 ◦M2 and Y an R(β2 + β3)-submodule of
M2 ◦M3 such that X ◦M3 ⊂ M1 ◦ Y as submodules of M1 ◦M2 ◦M3. Then there
exists an R(β2)-submodule N of M2 such that X ⊂ M1 ◦N and N ◦M3 ⊂ Y .

One of the main results in [15] is the following theorem.

Theorem 2.2.4 ([15, Theorem 3.2]). Let β, γ ∈ Q+ and assume that R(β) is
symmetric. Let M be a real simple module in R(β)-mod and N a simple module in
R(γ)-mod. Then

(i) M ◦N and N ◦M have simple socles and simple heads.
(ii) Moreover, Im(r

M,N
) is equal to the head of M ◦ N and socle of N ◦ M .

Similarly, Im(r
N,M

) is equal to the head of N ◦M and socle of M ◦N .

We will use the following convention frequently.

Definition 2.2.5. For simple R-modules M and N , we denote by M ∇N the head
of M ◦N and by M ΔN the socle of M ◦N .

3. Simplicity of heads and socles of convolution products

In this section, we assume that R(β) is symmetric for any β ∈ Q+; i.e., Qij(u, v)
is a function in u− v for any i, j ∈ I.

We also work always in the category of graded modules. For the sake of simplicity,
we simply say that M is an R-module instead of saying that M is a graded R(β)-
module for β ∈ Q+. We also sometimes ignore grading shifts if there is no danger
of confusion. Hence, for R-modules M and N , we sometimes say that f : M → N
is a homomorphism if f : qaM → N is a morphism in R-gmod for some a ∈ Z. If
we want to emphasize that f : qaM → N is a morphism in R-gmod, we say so.

3.1. Homogeneous degrees of R-matrices.

Definition 3.1.1. For non-zero M,N ∈ R-gmod, we denote by Λ(M,N) the ho-
mogeneous degree of the R-matrix r

M,N
.

Hence

Rren
Mz ,N : Mz ◦N → q−Λ(M,N)N ◦Mz and

r
M,N

: M ◦N → q−Λ(M,N)N ◦M

are morphisms in R-gMod and in R-gmod, respectively.

Lemma 3.1.2. For non-zero R-modules M and N , we have

Λ(M,N) ≡
(
wt(M),wt(N)

)
mod 2.

Proof. Set β := −wt(M) and γ := −wt(N). By [14, (1.3.3)], the homogeneous
degree of RMz,N is −(β, γ)+2(β, γ)n, where ( • , • )n is the symmetric bilinear form
on Q given by (αi, αj)n = δij . Hence Rren

Mz ,N
= z−sRMz,N has degree −(β, γ) +

2(β, γ)n − 2s. �
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Definition 3.1.3. For non-zero R-modules M and N , we set

Λ̃(M,N) :=
1

2

(
Λ(M,N) + (wt(M),wt(N))

)
∈ Z.

Lemma 3.1.4. Let M and N be self-dual simple modules. If one of them is real,
then

qΛ̃(M,N)M ∇N

is a self-dual simple module.

Proof. Set β = wt(M) and γ = wt(N). Set M∇N = qcL for some self-dual simple
module L and some c ∈ Z. Then we have

M ◦N � qcL � q−Λ(M,N)N ◦M,

since M ∇N = Im r
M,N

. Taking dual, we obtain

qΛ(M,N)+(β,γ)M ◦N � q−cL � q(β,γ)N ◦M.

In particular, q−c−Λ(M,N)−(β,γ)L is a simple quotient of M ◦ N . Hence we have

c = −c− Λ(M,N)− (β, γ), which implies c = −Λ̃(M,N). �

Lemma 3.1.5. (i) Let Mk be non-zero modules (k = 1, 2, 3), and let ϕ1 : L →
M1 ◦ M2 and ϕ2 : M2 ◦ M3 → L′ be non-zero homomorphisms. Assume
further that M2 is a simple module. Then the composition

L ◦M3
ϕ1◦M3−−−−−→ M1 ◦M2 ◦M3

M1◦ϕ2−−−−−→ M1 ◦ L′

does not vanish.
(ii) Let M be a simple module, and let N1, N2 be non-zero modules. Then the

composition

M ◦N1 ◦N2

r
M,N1

◦N2

−−−−−−−→ N1 ◦M ◦N2

N1◦ r
M,N2−−−−−−−−→ N1 ◦N2 ◦M

coincides with r
M,N1◦N2

, and the composition

N1 ◦N2 ◦M
N1◦ r

N2,M−−−−−−−−→ N1 ◦M ◦N2

r
N1,M

◦N2

−−−−−−−→ M ◦N1 ◦N2

coincides with r
N1◦N2,M

.

In particular, we have

Λ(M,N1 ◦N2) = Λ(M,N1) + Λ(M,N2)

and

Λ(N1 ◦N2,M) = Λ(N1,M) + Λ(N2,M).

Proof. (i) Assume that the composition vanishes. Then we have Imϕ1 ◦M3 ⊂ M1 ◦
Kerϕ2. By Lemma 2.2.3, there is a submodule N of M2 such that Imϕ1 ⊂ M1 ◦N
and N ◦M3 ⊂ Kerϕ2. The first inclusion implies that N 	= 0 since ϕ1 is non-zero,
and the second implies N 	= M2 since ϕ2 is non-zero. It contradicts the simplicity
of M2.

(ii) It is enough to show that the compositions (N1 ◦ r
M,N2

) ◦ (r
M,N1

◦N2) and

(r
N1,M

◦N2)◦(N1◦rN2,M
) do not vanish, but these immediately follow from (i). �
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3.2. Properties of Λ̃(M,N) and d(M,N).

Lemma 3.2.1. Let M and N be simple R-modules. Then we have

(i) Λ(M,N) + Λ(N,M) ∈ 2Z≥0.
(ii) If Λ(M,N) + Λ(N,M) = 2m for some m ∈ Z≥0, then

Rren
Mz,N ◦Rren

N,Mz
= zm idN◦Mz

and Rren
N,Mz

◦Rren
Mz,N = zm idMz◦N

up to constant multiples.

Proof. By [14, Proposition 1.6.2], the morphism

Rren
N,Mz

◦Rren
Mz,N : Mz ◦N → Mz ◦N

is equal to f(z) idMz◦N for some 0 	= f(z) ∈ k[z]. Since Rren
N,Mz

◦Rren
Mz,N

is homoge-

neous of degree Λ(M,N) +Λ(N,M), we have f(z) = cz
1
2 (Λ(M,N)+Λ(N,M)) for some

c ∈ k×. �

Definition 3.2.2. For non-zero modules M and N , we set

d(M,N) =
1

2

(
Λ(M,N) + Λ(N,M)

)
.

Note that if M and N are simple modules, then we have d(M,N) ∈ Z≥0. Note
also that if M,N1, N2 are simple modules, then we have d(M,N1◦N2) = d(M,N1)+
d(M,N2) by Lemma 3.1.5 (ii).

Lemma 3.2.3 ([15]). Let M,N be simple modules and assume that one of them is
real. Then the following conditions are equivalent:

(i) d(M,N) = 0.
(ii) r

M,N
and r

N,M
are inverse to each other up to a constant multiple.

(iii) M ◦N and N ◦M are isomorphic up to a grading shift.
(iv) M ∇N and N ∇M are isomorphic up to a grading shift.
(v) M ◦N is simple.

Proof. By specializing the equations in Lemma 3.2.1 (ii) at z = 0, we obtain that
d(M,N) = 0 if and only if r

M,N
◦ r

N,M
= idN◦M and r

N,M
◦ r

M,N
= idM◦N up to

non-zero constant multiples. Hence the conditions (i) and (ii) are equivalent.
The conditions (ii), (iii), (iv), and (v) are equivalent by [15, Theorem 3.2, Propo-

sition 3.8, and Corollary 3.9]. �

Definition 3.2.4. Let M,N be simple modules.

(i) We say that M and N commute if d(M,N) = 0.
(ii) We say that M and N are simply linked if d(M,N) = 1.

Proposition 3.2.5. Let M1, . . . ,Mr be a commuting family of real simple modules.
Then the convolution product

M1 ◦ · · · ◦Mr

is a real simple module.
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Proof. We shall first show the simplicity of the convolutions. By induction on r,
we may assume that M2 ◦ · · · ◦Mr is a simple module. Then we have

d(M1,M2 ◦ · · · ◦Mr) =
r∑

s=2

d(M1,Ms) = 0

so that M1 ◦ · · · ◦Mr is simple by Lemma 3.2.3.
Since (M1 ◦ · · · ◦Mr) ◦ (M1 ◦ · · · ◦Mr) is also simple, M1 ◦ · · · ◦Mr is real. �

Definition 3.2.6. Let M1, . . . ,Mm be real simple modules. Assume that they com-
mute with each other. We set

M1

⊙
M2 := qΛ̃(M1,M2)M1 ◦M2,⊙

1≤k≤m

Mk := (· · · (M1

⊙
M2) · · · )

⊙
Mm−1)

⊙
Mm

� q
∑

1≤i<j≤m Λ̃(Mi,Mj)M1 ◦ · · · ◦Mm.

It is invariant under the permutations of M1, . . . ,Mm.

Lemma 3.2.7. Let M1, . . . ,Mm be real simple modules commuting with each other.
Then for any σ ∈ Sm, we have

�
1≤k≤m

Mk � �
1≤k≤m

Mσ(k) in R-gmod.

Moreover, if the Mk’s are self-dual, then so is �1≤k≤mMk.

Proof. It follows from Lemma 3.1.4 and qΛ̃(Mi,Mj)Mi◦Mj � qΛ̃(Mj ,Mi)Mj ◦Mi. �

Proposition 3.2.8. Let f : N1 → N2 be a morphism between non-zero R-modules
N1, N2, and let M be a non-zero R-module.

(i) If Λ(M,N1) = Λ(M,N2), then the following diagram is commutative:

M ◦N1

r
M,N1 ��

M◦f
��

N1 ◦M

f◦M
��

M ◦N2

r
M,N2 �� N2 ◦M.

(ii) If Λ(M,N1) < Λ(M,N2), then the composition

M ◦N1
M◦f−−−→ M ◦N2

r
M,N2−−−−−→ N2 ◦M

vanishes.
(iii) If Λ(M,N1) > Λ(M,N2), then the composition

M ◦N1

r
M,N1−−−−−→ N1 ◦M

f◦M−−−→ N2 ◦M

vanishes.
(iv) If f is surjective, then we have

Λ(M,N1) ≥ Λ(M,N2) and Λ(N1,M) ≥ Λ(N2,M).

If f is injective, then we have

Λ(M,N1) ≤ Λ(M,N2) and Λ(N1,M) ≤ Λ(N2,M).
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Proof. Let si be the order of zero of RMz ,Ni
for i = 1, 2. Then we have Λ(M,N1)−

Λ(M,N2) = 2(s2 − s1).
Set m := min{s1, s2}. Then the following diagram is commutative:

Mz ◦N1

z−mRMz,N1 ��

Mz◦f
��

N1 ◦Mz

f◦Mz

��
Mz ◦N2

z−mRMz,N2 �� N2 ◦Mz.

(i) If s1 = s2, then by specializing z = 0 in the above diagram, we obtain the
commutativity of the diagram in (i).

(ii) If s1 > s2, then we have

z−mRMz,N1
= zs1−m

(
z−s1RMz,N1

)
so that z−mRMz,N1

|z=0 vanishes. Hence we have

r
M,N2

◦ (M ◦ f) = z−mRMz,N2
|z=0 ◦ (M ◦ f) = 0,

as desired. In particular, f is not surjective.
(iii) Similarly, if s1 < s2, then we have (f ◦M)◦r

M,N1
= 0, and f is not injective.

(iv) The statements for Λ(M,N1) and Λ(M,N2) follow from (ii) and (iii). The
other statements can be shown in a similar way. �

Proposition 3.2.9. Let M and N be simple modules. We assume that one of them
is real. Then we have

HomR-mod(M ◦N,N ◦M) = k r
M,N

.

Proof. Since the other case can be proved similarly, we assume that M is real. Let
f : M ◦N → N ◦M be a morphism. Note that we have r

M,M◦N = M ◦ r
M,N

and

r
M,N◦M = r

M,N
◦M by Lemma 3.1.5 (ii) and by the fact that r

M,M
= idM◦M up to

a constant multiple. Thus, by Proposition 3.2.8, we have a commutative diagram
(up to a constant multiple)

M ◦M ◦N
M◦r

M,N ��

M◦f
��

M ◦N ◦M

f◦M
��

M ◦N ◦M
r
M,N

◦M
�� N ◦M ◦M.

Hence we have

M ◦ Im(r
M,N

) ⊂ f−1
(
Im(r

M,N
)
)
◦M.

Hence there exists a submodule K of N such that Im(r
M,N

) ⊂ K ◦M and M ◦K ⊂
f−1

(
Im(r

M,N
)
)
by Lemma 2.2.3. Since K 	= 0, we have K = N . Hence f(M ◦N) ⊂

Im(r
M,N

), which means that f factors asM◦N → soc(N◦M) � N◦M . It remains

to remark that HomR-mod
(
M ◦N, soc(N ◦M)

)
= k r

M,N
. �

Proposition 3.2.10. Let L, M , and N be simple modules. Then we have

Λ(L, S) ≤ Λ(L,M) + Λ(L,N), Λ(S,L) ≤ Λ(M,L) + Λ(N,L), and

d(S,L) ≤ d(M,L) + d(N,L)
(3.1)
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for any subquotient S of M ◦N . Moreover, when L is real, the following conditions
are equivalent:

(i) L commutes with M and N .
(ii) Any simple subquotient S of M◦N commutes with L and satisfies Λ(L, S) =

Λ(L,M) + Λ(L,N).
(iii) Any simple subquotient S of M◦N commutes with L and satisfies Λ(S,L) =

Λ(M,L) + Λ(N,L).

Proof. The inequalities (3.1) are consequences of Proposition 3.2.8. Let us show
the equivalence of (i)–(iii).

Let M ◦ N = K0 ⊃ K1 ⊃ · · · ⊃ K
 ⊃ K
+1 = 0 be a Jordan–Hölder series
of M ◦ N . Then the renormalized R-matrix Rren

Lz,M◦N = (M ◦ Rren
Lz ,N

) ◦ (Rren
Lz,M

◦
N) : Lz ◦M ◦N → M ◦N ◦Lz is homogeneous of degree Λ(L,M)+Λ(L,N), and it
sends Lz ◦Kk to Kk ◦ Lz for any k ∈ Z. Hence f := r

L,M◦N = Rren
Lz ,M◦N |z=0 sends

L ◦Kk to Kk ◦ L.
First assume (i). Then f is an isomorphism. Hence f |L◦Kk

: L ◦ Kk → Kk ◦
L is injective. By comparing their dimension, f |L◦Kk

is an isomorphism, Hence
f |L◦(Kk/Kk+1) is an isomorphism of homogeneous degree Λ(L,M)+Λ(L,N). Hence
we obtain (ii).

Conversely, assume (ii). Then, Rren
Lz ,M◦N |Lz◦(Kk/Kk+1) and Rren

Lz ,Kk/Kk+1
have

the same homogeneous degree, and hence they should coincide. It implies that
f |L◦(Kk/Kk+1) = r

L,Kk/Kk+1
is an isomorphism for any k. Therefore f = (M◦r

L,N
)◦

(r
L,M

◦N) is an isomorphism, which implies that r
L,N

and r
L,M

are isomorphisms.

Thus we obtain (i).
Similarly, (i) and (iii) are equivalent. �

Lemma 3.2.11. Let L, M , and N be simple modules. We assume that L is real
and commutes with M . Then the diagram

L ◦ (M ◦N)
r
L,M◦N ��

��

(M ◦N) ◦ L

��
L ◦ (M ∇N)

r
L,M∇N �� (M ∇N) ◦ L

commutes.

Proof. Otherwise the composition

L ◦M ◦N
∼

r
L,M

◦N
�� M ◦ L ◦N

M◦r
L,N

�� M ◦N ◦ L �� (M ∇N) ◦ L

vanishes by Proposition 3.2.8. Hence we have

M ◦ Im(r
L,N

) ⊂ Ker(M ◦N → M ∇N) ◦ L.

Hence, by Lemma 2.2.3, there exists a submodule K of N such that

Im(r
L,N

) ⊂ K ◦ L and M ◦K ⊂ Ker(M ◦N → M ∇N).

The first inclusion implies K 	= 0 and the second implies K 	= N , which contradicts
the simplicity of N . �
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The following lemma can be proved similarly.

Lemma 3.2.12. Let L, M , and N be simple modules. We assume that L is real
and commutes with N . Then the diagram

(M ◦N) ◦ L
r
M◦N,L ��

��

L ◦ (M ◦N)

��
(M ∇N) ◦ L

r
M∇N,L �� L ◦ (M ∇N)

commutes.

The following proposition follows from Lemma 3.2.11 and Lemma 3.2.12.

Proposition 3.2.13. Let L, M , and N be simple modules. Assume that L is real.
Then we have the following:

(i) If L and M commute, then

Λ(L,M ∇N) = Λ(L,M) + Λ(L,N).

(ii) If L and N commute, then

Λ(M ∇N,L) = Λ(M,L) + Λ(N,L).

Proposition 3.2.14. Let M be a real simple module, and let N be a module with
a simple socle. If the following diagram

soc(N) ◦M
r
soc(N),M ��

��

��

M ◦ soc(N)
��

��
N ◦M

r
N,M �� M ◦N

commutes up to a non-zero constant multiple, then soc
(
M ◦ soc(N)

)
is equal to the

socle of M ◦N . In particular, M ◦N has a simple socle.

Proof. Let S be an arbitrary simple submodule of M ◦ N . Then we have the
following commutative diagram:

S ◦Mz

RS◦Mz ��
��

��

Mz ◦ S
��

��
M ◦N ◦Mz

RM◦N,Mz �� M ◦M ◦N.

By multiplying z−m, where m is the order of zero of RM◦N,M , and specializing at
z = 0, we have a commutative diagram (up to a constant multiple)

S ◦M ��
��

��

M ◦ S
��

��
M ◦N ◦M

M◦r
N,M �� M ◦M ◦N.

Here, we use the fact that r
M◦N,M

= (r
M,M

◦N)◦ (M ◦r
N,M

) from Lemma 3.1.5

and the fact that r
M,M

is equal to idM◦M up to a non-zero constant multiple,

because M is a real simple module.
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It follows that S◦M ⊂ M◦(r
N,M

)−1(S). Hence there exists a submodule K of N

such that S ⊂ M ◦K and K◦M ⊂ (r
N,M

)−1(S) by Lemma 2.2.3. Hence K 	= 0 and

soc(N) ⊂ K by the assumption. Hence r
N,M

(
soc(N) ◦M

)
⊂ r

N,M

(
K ◦M

)
⊂ S.

Since r
N,M

(
soc(N) ◦ M

)
is non-zero by the assumption, we have r

N,M

(
soc(N) ◦

M
)
= S. Thus we obtain the desired result. �

The following is a dual form of the preceding proposition.

Proposition 3.2.15. Let M be a real simple module. Let N be a module with a
simple head. If the following diagram

M ◦N
r
M,N ��

����

N ◦M

����
M ◦ hd(N)

r
M,hd(N) �� hd(N) ◦M

commutes up to a non-zero constant multiple, then M∇hd(N) is equal to the simple
head of M ◦N .

Proposition 3.2.16. Let L, M , and N be simple modules. We assume that L is
real and one of M and N is real.

(i) If Λ(L,M ∇N) = Λ(L,M) + Λ(L,N), then L ◦M ◦N has a simple head
and N ◦M ◦ L has a simple socle.

(ii) If Λ(M ∇ N,L) = Λ(M,L) + Λ(N,L), then M ◦ N ◦ L has a simple head
and L ◦N ◦M has a simple socle.

(iii) If d(L,M ∇N) = d(L,M) + d(L,N), then L ◦M ◦N and M ◦N ◦ L have
simple heads, and N ◦M ◦ L and L ◦N ◦M have simple socles.

Proof. (i) Denote k = Λ(L,M ∇ N) = Λ(L,M) + Λ(M,N) and m = Λ(M,N).
Then the diagram

L ◦M ◦N
r
L,M◦N ��

����

q−kM ◦N ◦ L

����
L ◦ (M ∇N)

r
L,M∇N ��

��
��

q−k(M ∇N) ◦ L
��
��

q−mL ◦N ◦M
r
L,N◦M �� q−k−mN ◦M ◦ L

commutes. Hence Proposition 3.2.14 and Proposition 3.2.15 imply that L ◦M ◦N
has a simple head and N ◦M ◦ L has a simple socle. Item (ii) is proved similarly.
(iii) If d(L,M ∇N) = d(L,M) + d(L,N), then we have Λ(L,M ∇N) = Λ(L,M) +
Λ(L,N) and Λ(M ∇ N,L) = Λ(M,L) + Λ(N,L) by Proposition 3.2.8. Thus the
statements in (iii) follow from (i) and (ii). �

Proposition 3.2.17. Let M and N be simple modules. Assume that one of them
is real and d(M,N) = 1. Then we have an exact sequence

0 → M ΔN → M ◦N → M ∇N → 0.

In particular, M ◦N has length 2.
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Proof. In the course of the proof, we ignore the grading.
Set X = Mz ◦ N and Y = N ◦ Mz. By Rren

N,Mz
: Y � X let us regard Y as

a submodule of X. By the condition, we have Rren
N,Mz

◦ Rren
Mz,N

= z idX up to a

constant multiple (see Lemma 3.2.1 (ii)), and hence we have

zX ⊂ Y ⊂ X.

We have an exact sequence

0 −−→ Y

zX
−−→ X

zX
−−→ X

Y
−−→ 0.

Since

M ◦N � X

zX
� X

Y
� z−1Y

Y
� N ◦M,

we have
X

Y
� M ∇N by Proposition 3.2.9. Similarly,

N ◦M � Y

zY
� Y

zX
� X

zX
� M ◦N

implies that
Y

zX
� M ΔN by Proposition 3.2.9. �

Lemma 3.2.18. Let M and N be simple modules. Assume that one of them is
real. If there is an exact sequence

0 → qmX −−→ M ◦N −−→ qnY −−→ 0

for self-dual simple modules X, Y and integers m, n, then we have

d(M,N) = m− n.

Proof. We may assume that M and N are self-dual without loss of generality. Then

we have n = −Λ̃(M,N). Since

qmX � qΛ(N,M)N ∇M � qΛ(N,M)−Λ̃(N,M)
(
qΛ̃(N,M)N ∇M

)
,

we have m = Λ(N,M)− Λ̃(N,M). Thus we obtain

m− n = Λ(N,M)− Λ̃(N,M) + Λ̃(M,N) = d(M,N).

�

Lemma 3.2.19. Let M and N be simple modules. Assume that one of them is
real. If the equation

[M ][N ] = qm[X] + qn[Y ]

holds in K(R-gmod) for self-dual simple modules X, Y and integers m, n such that
m ≥ n, then we have

(i) d(M,N) = m− n > 0,
(ii) there exists an exact sequence

0 −−→ qmX −−→ M ◦N −−→ qnY −−→ 0,

(iii) qmX is the socle of M ◦N and qnY is the head of M ◦N .
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Proof. First note that d(M,N) > 0 since M ◦N is not simple. By the assumption,
there exists either an exact sequence

0 −−→ qmX −−→ M ◦N −−→ qnY −−→ 0,

or

0 −−→ qnY −−→ M ◦N −−→ qmX −−→ 0.

The second sequence cannot exist by Lemma 3.2.18 because d(M,N) = n−m ≤ 0.
Hence the first sequence exists, and the assertion (iii) follows from Theorem 2.2.4.

�

Proposition 3.2.20. Let X,Y,M , and N be simple R-modules. Assume that there
is an exact sequence

0 → X → M ◦N → Y → 0,

X ◦N and Y ◦N are simple, and X ◦N 	� Y ◦N are ungraded modules. Then N
is a real simple module.

Proof. Assume that N is not real. Then N ◦ N is reducible, and we have r
N,N

	=
c idN◦N for any c ∈ k by [15, Corollary 3.3]. Note that N ◦N is of length 2, because
M ◦N ◦N is of length 2.

Let S be a simple submodule of N ◦N . Consider an exact sequence

0 −−→ X ◦N −−→ M ◦N ◦N −−→ Y ◦N −−→ 0.

Then we have

(X ◦N) ∩ (M ◦ S) = 0.(3.2)

Indeed, if (X ◦ N) ⊂ (M ◦ S), then there exists a submodule Z of N such that
X ⊂ M ◦Z and Z ◦N ⊂ S by [15, Lemma 3.1]. It contradicts the simplicity of N .
Thus (3.2) holds.

Note that (3.2) implies

M ◦ S � Y ◦N

since Y ◦N is simple.
(a) Assume first that N ◦ N is semisimple so that N ◦ N = S ⊕ S′ for some

simple submodule S′ of N ◦ N . Then M ◦ S � Y ◦N � M ◦ S′. Hence M ◦ S �
X ◦N � M ◦ S′. Therefore we obtain X ◦N � Y ◦N, which is a contradiction.

(b) Assume that N ◦N is not semisimple so that S is a unique non-zero proper
submodule of N ◦ N and (N ◦ N)/S is a unique non-zero proper quotient of N ◦
N . Without loss of generality, we may assume that k is algebraically closed [21,
Corollary 3.19]. Let x ∈ k be an eigenvalue of r

N,N
. Since r

N,N
	∈ k idN◦N , we

have 0 � Im(r
N,N

− x idN◦N ) � N ◦N . It follows that

S = Im(r
N,N

− x idN◦N ) � (N ◦N)/S,

and hence we have an exact sequence

0 −−→ M ◦ S −−→ M ◦N ◦N −−→ M ◦
(
(N ◦N)/S

)
−−→ 0.

Since M ◦N ◦N is of length 2, we have

X ◦N � M ◦ S � M ◦
(
(N ◦N)/S

)
� Y ◦N,

which is a contradiction. �
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Corollary 3.2.21. Let X,Y,N be simple R-modules, and let M be a real simple
R-module. If we have an exact sequence

0 → X → M ◦N → Y → 0

and if X ◦N and Y ◦N are simple, then N is a real simple module.

Proof. Since M is real and M ◦ N is not simple, X is not isomorphic to Y as an
ungraded module by Lemma 3.2.3 (iv). It follows that X ◦N is not isomorphic to
Y ◦ N , because K(R-gmod) is a domain so that [X ◦ N ] = qm[Y ◦ N ] for some
m ∈ Z implies [X] = qm[Y ]. Now the assertion follows from Proposition 3.2.20. �

Lemma 3.2.22. Let {Mi}1≤i≤n and {Ni}1≤i≤n be a pair of commuting families
of real simple modules. We assume that

(a) {Mi ∇Ni}1≤i≤n is a commuting family of real simple modules,
(b) Mi ∇Ni commutes with Nj for any 1 ≤ i, j ≤ n.

Then we have

(◦1≤i≤nMi)∇ (◦1≤j≤nNj) � ◦1≤i≤n(Mi ∇Ni) up to a grading shift.

Proof. Since ◦1≤i≤n(Mi ∇ Ni) is simple, it is enough to give an epimorphism
(◦1≤i≤nMi) ◦ (◦1≤j≤nNj) � ◦1≤i≤n(Mi ∇ Ni). We shall show it by induction
on n. For n > 0, we have

(◦1≤i≤nMi) ◦ (◦1≤j≤nNj) � (◦1≤i≤n−1Mi) ◦Mn ◦Nn ◦ (◦1≤j≤n−1Nj)

� (◦1≤i≤n−1Mi) ◦ (Mn ∇Nn) ◦ (◦1≤j≤n−1Nj)

� (◦1≤i≤n−1Mi) ◦ (◦1≤j≤n−1Nj) ◦ (Mn ∇Nn)

� (◦1≤i≤n−1(Mi ∇Ni)) ◦ (Mn ∇Nn),

as desired. �

4. Leclerc’s conjecture

In this section, R is assumed to be a symmetric KLR algebra over a base field k.

4.1. Leclerc’s conjecture. The following theorem is a part of Leclerc’s conjecture
stated in the Introduction.

Theorem 4.1.1. Let M and N be simple modules. We assume that M is real.
Then we have the equalities in the Grothendieck group K(R-gmod) as follows:

(i) [M ◦N ] = [M ∇N ] +
∑

k[Sk]

with simple modules Sk such that Λ(M,Sk) < Λ(M,M ∇N) = Λ(M,N),
(ii) [M ◦N ] = [M ΔN ] +

∑
k[Sk]

with simple modules Sk such that Λ(Sk,M) < Λ(M ΔN,M) = Λ(N,M),
(iii) [N ◦M ] = [N ∇M ] +

∑
k[Sk]

with simple modules Sk such that Λ(Sk,M) < Λ(N ∇M,M) = Λ(N,M),
(iv) [N ◦M ] = [N ΔM ] +

∑
k[Sk]

with simple modules Sk such that Λ(M,Sk) < Λ(M,N ΔM) = Λ(M,N).

In particular, M ∇ N as well as M Δ N appears only once in the Jordan–Hölder
series of M ◦N in R-mod.

The following result is an immediate consequence of this theorem.
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Corollary 4.1.2. Let M and N be simple modules. We assume that one of them
is real. Assume that M and N do not commute, Then we have the equality in the
Grothendieck group K(R-gmod)

[M ◦N ] = [M ∇N ] + [M ΔN ] +
∑
k

[Sk]

with simple modules Sk. Moreover we have the following:

(i) If M is real, then we have Λ(M,M Δ N) < Λ(M,N), Λ(M ∇ N,M) <
Λ(N,M) and Λ(M,Sk) < Λ(M,N), Λ(Sk,M) < Λ(N,M).

(ii) If N is real, then we have Λ(N,M ∇ N) < Λ(N,M), Λ(M Δ N,N) <
Λ(M,N) and Λ(N,Sk) < Λ(N,M), Λ(Sk, N) < Λ(M,N).

Proof of Theorem 4.1.1. We shall prove only (i). The other statements are proved
similarly.

M ◦N = K0 ⊃ K1 ⊃ · · · ⊃ K
 ⊃ K
+1 = 0.

Then we have K0/K1 � M ∇ N . Let us consider the renormalized R-matrix
Rren

Mz,M◦N = (M ◦Rren
Mz,N

) ◦ (Rren
Mz,M

◦N)

Mz ◦M ◦N
Rren

Mz,M◦N
�� M ◦Mz ◦N

M◦Rren
Mz,N �� M ◦N ◦Mz.

Then Rren
Mz,M◦N sends Mz ◦Kk to Kk ◦Mz for any k. Hence evaluating the above

diagram at z = 0, we obtain

M ◦M ◦N
M◦r

M,N �� M ◦N ◦M

M ◦K1
����

��

K1 ◦M .
��

��

Since Im(r
M,N

: M ◦N → N ◦M) � (M ◦N)/K1, we have r
M,N

(K1) = 0. Hence,

Rren
Mz,M◦N sends Mz ◦ K1 to (K1 ◦Mz) ∩ z

(
(M ◦ N) ◦Mz

)
= z(K1 ◦Mz). Thus

z−1Rren
Mz ,M◦N |Mz◦K1

is well defined. Then it sends Mz ◦Kk to Kk ◦Mz for k ≥ 1.
Thus we obtain an R-matrix

z−1Rren
Mz ,M◦N |Mz◦(Kk/Kk+1) : Mz ◦ (Kk/Kk+1) → (Kk/Kk+1) ◦Mz for 1 ≤ k ≤ �.

Hence we have

Rren
Mz,Kk/Kk+1

= z−skz−1Rren
Mz ,M◦N |Mz◦(Kk/Kk+1)

for some sk ∈ Z≥0. Since the homogeneous degree of Rren
Mz,M◦N is Λ(M,M ◦N) =

Λ(M,N), we obtain

Λ(M,Kk/Kk+1) = Λ(M,N)− 2(1 + sk) < Λ(M,N).

�

Recall that the isomorphism classes of self-dual simple modules in R-gmod are
parametrized by the crystal basis B(∞) [28]. The following theorem is an applica-
tion of the above theorem.
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Theorem 4.1.3. Let φ be an element of the Grothendieck group K(R-gmod)
given by

φ =
∑

b∈B(∞)

ab[Lb],

where Lb is the self-dual simple module corresponding to b ∈ B(∞) and ab ∈ Z[q±1].
Let A be a real simple module in R-gmod. Assume that we have an equality

φ[A] = ql[A]φ

in K(R-gmod) for some l ∈ Z. Then A commutes with Lb and

l = Λ(A,Lb)

for every b ∈ B(∞) such that ab 	= 0.

Proof. Note that we have

φ[A] =
∑
b

ab[Lb ◦A] =
∑
b

ab([Lb ∇A] +
∑
k

[Sb,k]) and

ql[A]φ = ql
∑
b

ab[A ◦ Lb] = ql
∑
b

ab(q
Λ(Lb,A)[Lb ∇A] +

∑
k

[Sb,k]),

for some simple modules Sb,k and Sb,k satisfying

Λ(Sb,k, A) < Λ(Lb, A) and Λ(Sb,k, A) < Λ(Lb, A)

by Theorem 4.1.1.
We may assume that {b ∈ B(∞) | ab 	= 0} 	= ∅. Set

t := max {Λ(Lb, A) | ab 	= 0} .
By taking the classes of self-dual simple modules S with Λ(S,A) = t in the expan-
sions of φ[A] and ql[A]φ, we obtain∑

Λ(Lb,A)=t

ab[Lb ∇A] =
∑

Λ(Lb,A)=t

qlabq
Λ(Lb,A)[Lb ∇ A].

In particular, we have t = −l.
Set

t′ := max {Λ(A,Lb) | ab 	= 0} .
Then, by a similar argument we have t′ = l.

It follows that

0 = t+ t′ ≥ Λ(Lb, A) + Λ(A,Lb) ≥ 0

for every b such that ab 	= 0. Hence A and Lb commute.
Since∑

ab qΛ(A,Lb)[A ◦ Lb] =
∑

ab[Lb ◦A] = φ[A] = ql[A]φ = ql
∑

ab[A ◦ Lb],

we have

l = Λ(A,Lb)

for any b such that ab 	= 0, as desired. �
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Corollary 4.1.4. Let M and N be simple modules. Assume that one of them is
real. If [M ] and [N ] q-commute (i.e., [M ][N ] = qn[N ][M ] for some n ∈ Z), then
M and N commute. In particular, M ◦N is simple.

The following corollary is an immediate consequence of the corollary above and
Theorem 2.1.4.

Corollary 4.1.5. Assume that the generalized Cartan matrix A is symmetric and
that b1, b2 ∈ B(∞) satisfy the following conditions:

(i) one of Gup(b1)
2 and Gup(b2)

2 is a member of the upper global basis up to
a power of q,

(ii) Gup(b1) and Gup(b2) q-commute.

Then their product Gup(b1)G
up(b2) is a member of the upper global basis of U−

q (g)
up to a power of q.

4.2. Geometric results. The result of this subsection (Theorem 4.2.1) was ex-
plained to us by Peter McNamara. It will be used in the proof of the crucial result
Theorem 10.3.1. In this subsection, we assume further that the base field k is of
characteristic 0.

Theorem 4.2.1 ([34, Lemma 7.5]). Assume that the base field k is of characteristic
0. Assume that M ∈ R-gmod has a head qcH with a self-dual simple module H
and c ∈ Z. Then we have the equality in the Grothendieck group K(R-gmod)

[M ] = qc[H] +
∑
k

qck [Sk]

with self-dual simple modules Sk and ck > c.

By duality, we obtain the following corollary.

Corollary 4.2.2. Assume that the base field k is a field of characteristic 0. Assume
that M ∈ R-gmod has a socle qcS with a self-dual simple module S and c ∈ Z. Then
we have the equality in K(R-gmod)

[M ] = qc[S] +
∑
k

qck [Sk]

with self-dual simple modules Sk and ck < c.

Applying this theorem to convolution products, we obtain the following corollary.

Corollary 4.2.3. Assume that the base field k is of characteristic 0. Let M and N
be simple modules. We assume that one of them is real. Then we have the equalities
in K(R-gmod) as follows:

(i) [M ◦N ] = [M ∇N ] +
∑

k q
ck [Sk]

with self-dual simple modules Sk and

ck > −Λ̃(M,N) =
(
−Λ(M,N)− (wt(M),wt(N)

)
/2.

(ii) [M ◦N ] = [M ΔN ] +
∑

k q
ck [Sk]

with self-dual simple modules Sk and ck <
(
Λ(N,M)− (wt(N),wt(M))

)
/2.

Note that qΛ̃(M,N)M ∇N is self-dual by Lemma 3.1.4.
Theorem 4.1.1 and Theorem 4.2.1 solve affirmatively Conjecture 1 of Leclerc

[29] in the symmetric generalized Cartan matrix case, as stated in the Introduc-
tion. More precisely, let R be a symmetric KLR algebra over a base field k of
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characteristic 0, and let M and N be simple modules over R. Assume further that
M is real. Then by Theorem 4.1.1 M ∇ N and M Δ N appear exactly once in a
Jordan–Hölder series of M ◦N . Write M ∇N = qmH and M ΔN = qsS for some
self-dual simple modules H, S, and m, s ∈ Z. By Theorem 4.2.1, we have

[M ◦N ] = qm[H] + qs[S] +
∑
k

qck [Sk],

where Sk are self-dual simple modules, and m < ck < s for all k. Collecting the
terms, we obtain

[M ◦N ] = qm[H] + qs[S] +
∑

L��H,S

γL
M,N (q)[L],

with

γL
M,N (q) ∈ qm+1Z[q] ∩ qs−1Z[q−1],

which proves Leclerc’s first conjecture via Theorem 2.1.4.
We obtain the following result which is a generalization of Lemma 3.2.18 in the

characteristic-zero case.

Corollary 4.2.4. Assume that the base field k is of characteristic 0. Let M and
N be simple modules. We assume that one of them is real. Write

[M ◦N ] =

n∑
k=1

qck [Sk]

with self-dual simple modules Sk and ck ∈ Z. Then we have

max {ck | 1 ≤ k ≤ n} −min {ck | 1 ≤ k ≤ n} = d(M,N).

4.3. Proof of Theorem 4.2.1. Recall that the graded algebra R(β) (β ∈ Q+)
is geometrically realized as follows [40]. There exist a reductive group G and a
G-equivariant projective morphism f : X → Y from a smooth algebraic G-variety
X to an affine G-variety Y defined over the complex number field C such that

R(β) � ẼndDb
G(kY )(Rf∗(kX [dimX])) as a graded k-algebra.

Here, Db
G(kY ) denotes the G- equivariant derived category of the G-variety Y with

coefficient k, and ẼndDb
G(kY )(K) = H̃omDb

G(kY )(K,K) with

H̃omDb
G(kY )(K,K ′) :=

⊕
n∈Z

HomDb
G(kY )(K,K ′[n]).

We denote by kX [dimX] the direct sum of the constant sheaves on each connected
component of X, all of which are shifted by their dimensions. By the decomposition
theorem [1], we have a decomposition

Rf∗(kX [dimX]) �
⊕
a∈J

Ea⊗Fa,

where {Fa}a∈J is a finite family of simple perverse sheaves on Y and Ea is a non-
zero finite-dimensional graded k-vector space such that

Hk(Ea) � H−k(Ea) for any k ∈ Z.(4.1)

The last fact (4.1) follows from the hard Lefschetz theorem [1].

Set Aa,b = H̃omDb
G(kY )(Fb,Fa). Then we have the multiplication morphisms

Aa,b ⊗Ab,c → Aa,c
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so that

A :=
⊕

a,b∈J

Aa,b

has a structure of Z-graded algebra such that

A≤0 :=
⊕
n≤0

An = A0 � kJ .

Hence the family of the isomorphism classes of simple objects (up to a grading
shift) in A-gmod is {ka}a∈J . Here, ka is the module obtained by the algebra
homomorphism A → A≤0 � kJ → k, where the last arrow is the ath projection.
Hence we have

K(A-gmod) �
⊕
a∈J

Z[q±1][ka].

On the other hand, we have

R(β) �
⊕

a,b∈J

Ea⊗Aa,b ⊗E∗
b .

Set

L :=
⊕

a,b∈J

Ea ⊗Aa,b.

Then, L is endowed with a natural structure of (
⊕

a,b∈J

Ea ⊗Aa,b ⊗E∗
b , A)-bimodule.

It is well known that the functor M �→ L⊗A M gives a graded Morita-equivalence

Φ: A-gmod ∼−−→R(β)-gmod.

Note that Φ(ka) � Ea and {Ea}a∈J is the set of isomorphism classes of self-dual
simple graded R(β)-modules by (4.1).

By the above observation, in order to prove the theorem, it is enough to show
the corresponding statement for the graded ring A, which is obvious.

5. Quantum cluster algebras

In this section we recall the definition of skew-symmetric quantum cluster alge-
bras following [3] and [11, Section 8].

5.1. Quantum seeds. Fix a finite index set J = Jex � Jfr with the decomposition
into the set Jex of exchangeable indices and the set Jfr of frozen indices. Let
L = (λij)i,j∈J be a skew-symmetric integer-valued J × J-matrix.

Definition 5.1.1. We define P(L) as the Z[q±1/2]-algebra generated by a family
of elements {Xi}i∈J with the defining relations

XiXj = qλijXjXi (i, j ∈ J).

We denote by F (L) the skew field of fractions of P(L).

For a = (ai)i∈J ∈ ZJ , we define the element Xa of F (L) as

Xa := q1/2
∑

i>j aiajλij

−→∏
i∈J

Xai
i .

Here we take a total order < on the set J and
−→∏

i∈JX
ai
i = X

ai1
i1

· · ·Xair
ir

where
J = {i1, . . . , ir} with i1 < · · · < ir. Note that Xa does not depend on the choice of
a total order of J .
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We have

XaXb = q1/2
∑

i,j∈J aibjλijXa+b.(5.1)

If a ∈ ZJ
≥0, then Xa belongs to P(L).

It is well known that {Xa}a∈ZJ
≥0

is a basis of P(L) as a Z[q±1/2]-module.

Let A be a Z[q±1/2]-algebra. We say that a family {xi}i∈J of elements of A
is L-commuting if it satisfies xixj = qλijxjxi for any i, j ∈ J . In such a case
we can define xa for any a ∈ ZJ

≥0. We say that an L-commuting family {xi}i∈J

is algebraically independent if the algebra map P(L) → A given by Xi �→ xi is
injective.

Let B̃ = (bij)(i,j)∈J×Jex
be an integer-valued J × Jex-matrix. We assume that

the principal part B := (bij)i,j∈Jex
of B̃ is skew-symmetric.

To the matrix B̃ we can associate the quiver QB̃ without loops, 2-cycles, and
arrows between frozen vertices such that its vertices are labeled by J and the arrows
are given by
(5.2)
bij = (the number of arrows from i to j)− (the number of arrows from j to i).

Here we extend the J × Jex-matrix B̃ to the skew-symmetric J × J-matrix B̃′ =
(bij)i,j∈J by setting bij = 0 for i, j ∈ Jfr.

Conversely, whenever we have a quiver with vertices labeled by J and without
loops, 2-cycles, and arrows between frozen vertices, we can associate a J × Jex-

matrix B̃ by (5.2).

We say that the pair (L, B̃) is compatible if there exists a positive integer d such
that ∑

k∈J

λikbkj = δijd (i ∈ J, j ∈ Jex).(5.3)

Let (L, B̃) be a compatible pair and A a Z[q±1/2]-algebra. We say that S =

({xi}i∈J , L, B̃) is a quantum seed in A if {xi}i∈J is an algebraically independent
L-commuting family of elements of A.

The set {xi}i∈J is called the cluster of S and its elements the cluster variables.
The cluster variables xi (i ∈ Jfr) are called the frozen variables. The elements xa

(a ∈ ZJ
≥0) are called the quantum cluster monomials.

5.2. Mutation. For k ∈ Jex, we define a J × J-matrix E = (eij)i,j∈J and a
Jex × Jex-matrix F = (fij)i,j∈Jex

as follows:

eij =

⎧⎪⎨⎪⎩
δij if j 	= k,

−1 if i = j = k,

max(0,−bik) if i 	= j = k,

fij =

⎧⎪⎨⎪⎩
δij if i 	= k,

−1 if i = j = k,

max(0, bkj) if i = k 	= j.

The mutation μk(L, B̃) := (μk(L), μk(B̃)) of a compatible pair (L, B̃) in direction k
is given by

μk(L) := (ET )LE, μk(B̃) := E B̃ F.

Then the pair (μk(L), μk(B̃)) is also compatible with the same integer d as in the

case of (L, B̃) [3].
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Note that for each k ∈ Jex, we have

μk(B̃)ij =

{
−bij if i = k or j = k,

bij + (−1)δ(bik<0)max(bikbkj , 0) otherwise,
(5.4)

and

μk(L)ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if i = j

−λkj +
∑
t∈J

max(0,−btk)λtj if i = k, j 	= k,

−λik +
∑
t∈J

max(0,−btk)λit if i 	= k, j = k,

λij otherwise.

Note also that we have∑
t∈J

max(0,−btk)λit =
∑
t∈J

max(0, btk)λit

for i ∈ J with i 	= k, since (L, B̃) is compatible.
We define

a′i =

{
−1 if i = k,

max(0, bik) if i 	= k,
a′′i =

{
−1 if i = k,

max(0,−bik) if i 	= k,
(5.5)

and set a′ := (a′i)i∈J and a′′ := (a′′i )i∈J .

Let A be a Z[q±1/2]-algebra contained in a skew fieldK. Let S = ({xi}i∈J , L, B̃)
be a quantum seed in A. Define the elements μk(x)i of K by

μk(x)i :=

{
xa′

+ xa′′
, if i = k,

xi if i 	= k.
(5.6)

Then {μk(x)i} is an algebraically independent μk(L)-commuting family in K. We
call

μk(S ) :=
(
{μk(x)i}i∈J , μk(L), μk(B̃)

)
the mutation of S in direction k. It becomes a new quantum seed in K.

Definition 5.2.1. Let S = ({xi}i∈J , L, B̃) be a quantum seed in A. The quan-
tum cluster algebra Aq1/2(S ) associated to the quantum seed S is the Z[q±1/2]-
subalgebra of the skew field K generated by all the quantum cluster variables in the
quantum seeds obtained from S by any sequence of mutations.

We call S the initial quantum seed of the quantum cluster algebra Aq1/2(S ).

6. Monoidal categorification of cluster algebras

Throughout this section, fix J = Jex � Jfr and a base field k.
Let C be a k-linear abelian monoidal category. For the definition of monoidal

category, see, for example, [14, Appendix A.1]. Note that in [14], it was called
the tensor category. A k-linear abelian monoidal category is a k-linear monoidal
category such that it is abelian and the tensor functor ⊗ is k-bilinear and exact.
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We assume further the following conditions on C:{
(i) Any object of C has a finite length,
(ii) k ∼−−→HomC(S, S) for any simple object S of C.(6.1)

A simple object M in C is called real if M ⊗M is simple.

6.1. Ungraded cases.

Definition 6.1.1. Let S = ({Mi}i∈J , B̃) be a pair of a family {Mi}i∈J of sim-

ple objects in C and an integer-valued J × Jex-matrix B̃ = (bij)(i,j)∈J×Jex
whose

principal part is skew-symmetric. We call S a monoidal seed in C if

(i) Mi ⊗Mj � Mj ⊗Mi for any i, j ∈ J ,

(ii)
⊗
i∈J

M⊗ai
i is simple for any (ai)i∈J ∈ ZJ

≥0.

Definition 6.1.2. For k ∈ Jex, we say that a monoidal seed S = ({Mi}i∈J , B̃)
admits a mutation in direction k if there exists a simple object M ′

k ∈ C such that

(i) there exist exact sequences in C,

0 →
⊗

bik>0

M⊗bik
i → Mk ⊗M ′

k →
⊗

bik<0

M
⊗(−bik)
i → 0,

0 →
⊗

bik<0

M
⊗(−bik)
i → M ′

k ⊗Mk →
⊗

bik>0

M⊗bik
i → 0;

(ii) the pair μk(S ) := ({Mi}i �=k ∪ {M ′
k}, μk(B̃)) is a monoidal seed in C.

Recall that a cluster algebra A with an initial seed ({xi}i∈J , B̃) is the
Z-subalgebra of Q(xi|i ∈ J) generated by all the cluster variables in the seeds

obtained from ({xi}i∈J , B̃) by any sequence of mutations. Here, the mutation x′
k

of a cluster variable xk (k ∈ Jex) is given by

x′
k =

∏
bik≥0 x

bik
i +

∏
bik≤0 x

−bik
i

xk
,

and the mutation of B̃ is given in (5.4).

Definition 6.1.3. A k-linear abelian monoidal category C satisfying (6.1) is called
a monoidal categorification of a cluster algebra A if

(i) the Grothendieck ring K(C) is isomorphic to A,

(ii) there exists a monoidal seed S = ({Mi}i∈J , B̃) in C such that

[S ] := ({[Mi]}i∈J , B̃) is the initial seed of A and S admits successive
mutations in all directions.

Note that if C is a monoidal categorification of A, then every seed in A is of the

form ({[Mi]}i∈J , B̃) for some monoidal seed ({Mi}i∈J , B̃) in C. In particular, all
the cluster monomials in A are the classes of real simple objects in C.

6.2. Graded cases. Let Q be a free abelian group equipped with a symmetric
bilinear form

( , ) : Q× Q → Z such that (β, β) ∈ 2Z for all β ∈ Q.
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We consider a k-linear abelian monoidal category C satisfying (6.1) and the follow-
ing conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) We have a direct sum decomposition C =
⊕
β∈Q

Cβ such that

the tensor product ⊗ sends Cβ×Cγ to Cβ+γ for every β, γ ∈
Q.

(ii) There exists an object Q ∈ C0 satisfying
(a) there is an isomorphism

RQ(X) : Q⊗X ∼−−→X ⊗Q

functorial in X ∈ C such that

Q⊗X ⊗ Y
RQ(X)

��

RQ(X⊗Y )

��
X ⊗Q⊗ Y

RQ(Y )
�� X ⊗ Y ⊗Q

commutes for any X,Y ∈ C;
(b) the functorX �→ Q⊗X is an equivalence of categories.

(iii) for any M , N ∈ C, we have HomC(M,Q⊗n ⊗N) = 0 ex-
cept finitely many integers n.

(6.2)

We denote by q the auto-equivalence Q ⊗ • of C, and call it the grading shift
functor.

In such a case the Grothendieck group K(C) is a Q-graded Z[q±1]-algebra:
K(C) =

⊕
β∈Q

K(C)β where K(C)β = K(Cβ). Moreover, we have

K(C) =
⊕
S

Z[q±1][S],

where S ranges over equivalence classes of simple modules. Here, two simple mod-
ules S and S′ are equivalent if qnS � S′ for some n ∈ Z.

For M ∈ Cβ , we sometimes write β = wt(M) and call it the weight of M .

Similarly, for x ∈ Q(q1/2)⊗Z[q±1] K(Cβ), we write β = wt(x) and call it the weight
of x.

Definition 6.2.1. We call a quadruple S = ({Mi}i∈J , L, B̃,D) a quantum
monoidal seed in C if it satisfies the following conditions:

(i) B̃ = (bij)i∈J, j∈Jex
is an integer-valued J × Jex-matrix whose principal part

is skew-symmetric,
(ii) L = (λij)i,j∈J is an integer-valued skew-symmetric J × J-matrix,
(iii) D = {di}i∈J is a family of elements in Q,
(iv) {Mi}i∈J is a family of simple objects such that Mi ∈ Cdi

for any i ∈ J ,
(v) Mi ⊗Mj � qλijMj ⊗Mi for all i, j ∈ J ,
(vi) Mi1 ⊗ · · · ⊗Mit is simple for any sequence (i1, . . . , it) in J ,

(vii) The pair (L, B̃) is compatible in the sense of (5.3) with d = 2,
(viii) λij − (di, dj) ∈ 2Z for all i, j ∈ J ,

(ix)
∑
i∈J

bikdi = 0 for all k ∈ Jex.
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Let S = ({Mi}i∈J , L, B̃,D) be a quantum monoidal seed. For any X ∈ Cβ and
Y ∈ Cγ such that X ⊗ Y � qcY ⊗X and c+ (β, γ) ∈ 2Z, we set

Λ̃(X,Y ) =
1

2

(
−c+ (β, γ)

)
∈ Z

and

X�Y := qΛ̃(X,Y )X ⊗Y � qΛ̃(Y,X)Y ⊗X.

Then X�Y � Y �X. For any sequence (i1, . . . , i
) in J , we define


⊙
s=1

Mis := (· · · ((Mi1 �Mi2)�Mi3) · · · )�Mi� .

Then we have

⊙

s=1
Mis = q

1
2

∑
1≤u<v≤�(−λiuiv+(diu ,div ))Mi1 ⊗ · · · ⊗Mi� .

For any w ∈ S
, we have


⊙
s=1

Miw(s)
�


⊙
s=1

Mis .

Hence for any subset A of J and any set of non-negative integers {ma}a∈A, we can
define

⊙
a∈A

M�ma
a .

For (ai)i∈J ∈ ZJ
≥0 and (bi)i∈J ∈ ZJ

≥0, we have(⊙
i∈J

M�ai
i

)
�
(⊙
i∈J

M�bi
i

)
�

⊙
i∈J

M
�(ai+bi)
i .

Let S = ({Mi}i∈J , L, B̃,D) be a quantum monoidal seed. When the
L-commuting family {[Mi]}i∈J of elements of Z[q±1/2]⊗Z[q±1] K(C) is algebraically
independent, we shall define a quantum seed [S ] in Z[q±1/2]⊗Z[q±1] K(C) by

[S ] = ({q−(di,di)/4[Mi]}i∈J , L, B̃).

Set

Xi := q−(di,di)/4[Mi].

Then for any a = (ai)i∈J ∈ ZJ
≥0, we have

Xa = q−(μ,μ)/4[
⊙
i∈J

M�ai
i ],

where μ = wt(
⊙
i∈J

M�ai
i ) = wt(Xa) =

∑
i∈J aidi.

For a given k ∈ Jex, we define the mutation μk(D) ∈ QJ of D in direction k with

respect to B̃ by

μk(D)i = di (i 	= k), μk(D)k = −dk +
∑
bik>0

bikdi.

Note that

μk(μk(D)) = D.

Note also that (μk(L), μk(B̃), μk(D)) satisfies conditions (viii) and (ix) in Defini-
tion 6.2.1 for any k ∈ Jex.

We have the following lemma.
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Lemma 6.2.2. Set X ′
k = μk(X)k, the mutation of Xk as in (5.6). Set ζ =

wt(X ′
k) = −dk +

∑
bik>0 bikdi. Then we have

qmk [Mk]q
(ζ,ζ)/4X ′

k = q[
⊙

bik>0

M�bik
i ] + [

⊙
bik<0

M
�(−bik)
i ],

qm
′
kq(ζ,ζ)/4X ′

k[Mk] = [
⊙

bik>0

M�bik
i ] + q[

⊙
bik<0

M
�(−bik)
i ],

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
mk =

1

2
(dk, ζ) +

1

2

∑
bik<0

λkibik,

m′
k =

1

2
(dk, ζ) +

1

2

∑
bik>0

λkibik.
(6.3)

Proof. By (5.1), we have

XkX
a = q

1
2

∑
i∈J aiλkiXek+a for a = (ai)i∈J ∈ ZJ and (ek)i = δik (i ∈ J).

Let a′ and a′′ be as in (5.5). Because∑
i∈J

a′iλki −
∑
i∈J

a′′i λki =
∑
bik>0

bikλki −
∑
bik<0

(−bik)λki =
∑
i∈J

bikλki = 2,

we have

XkX
′
k = Xk(X

a′
+Xa′′

) = q
1
2

∑
i a

′′
i λki(qXek+a′

+Xek+a′′
).

Note that wt(Xek+a′
) = wt(Xek+a′′

) = dk + ζ. It follows that

mk = −1

4
((dk, dk) + (ζ, ζ))− 1

2

∑
i∈J

a′′i λki +
1

4
(ζ + dk, ζ + dk)

=
1

2
(dk, ζ) +

1

2

∑
bik<0

bikλki.

One can calculate m′
k in a similar way. �

Definition 6.2.3. We say that a quantum monoidal seed S = ({Mi}i∈J , L, B̃,D)
admits a mutation in direction k ∈ Jex if there exists a simple object M ′

k ∈ Cμk(D)k

such that

(i) there exist exact sequences in C,

0 → q
⊙

bik>0

M�bik
i → qmkMk ⊗M ′

k →
⊙

bik<0

M
�(−bik)
i → 0,(6.4)

0 → q
⊙

bik<0

M
�(−bik)
i → qm

′
kM ′

k ⊗Mk →
⊙

bik>0

M�bik
i → 0,(6.5)

where mk and m′
k are as in (6.3).

(ii) μk(S ) :=
(
{Mi}i �=k � {M ′

k}, μk(L), μk(B̃), μk(D)
)
is a quantum monoidal

seed in C.
We call μk(S ) the mutation of S in direction k.

By Lemma 6.2.2, the following lemma is obvious.

Lemma 6.2.4. Let S = ({Mi}i∈J , L, B̃,D) be a quantum monoidal seed which
admits a mutation in direction k ∈ Jex. Then we have

[μk(S )] = μk([S ]).
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Definition 6.2.5. Assume that a k-linear abelian monoidal category C satisfies
(6.1) and (6.2). The category C is called a monoidal categorification of a quantum
cluster algebra A over Z[q±1/2] if

(i) the Grothendieck ring Z[q±1/2]⊗Z[q±1] K(C) is isomorphic to A,

(ii) there exists a quantum monoidal seed S = ({Mi}i∈J , L, B̃,D) in C such

that [S ] := ({q−(di,di)/4[Mi]}i∈J , L, B̃) is a quantum seed of A,
(iii) S admits successive mutations in all the directions.

Note that if C is a monoidal categorification of a quantum cluster algebra A,
then any quantum seed in A obtained by a sequence of mutations from the initial

quantum seed is of the form ({q−(di,di)/4[Mi]}i∈J , L, B̃) for some quantum monoidal

seed ({Mi}i∈J , L, B̃,D). In particular, all the quantum cluster monomials in A are
the classes of real simple objects in C up to a power of q1/2.

7. Monoidal categorification via modules over KLR algebras

7.1. Admissible pair. In this section, we assume that R is a symmetric KLR
algebra over a base field k.

From now on, we focus on the case when C is a full subcategory of R-gmod stable
under taking convolution products, subquotients, extensions, and grading shift. In
particular, we have

C =
⊕

β∈Q−
Cβ , where Cβ := C ∩R(−β)-gmod,

and we have the grading shift functor q on C. Hence we have

K(Cβ) ⊂ U−
q (g)β,

andK(C) has a Z[q±1]-basis consisting of the isomorphism classes of self-dual simple
modules.

Definition 7.1.1. A pair ({Mi}i∈J , B̃) is called admissible if

(i) {Mi}i∈J is a family of real simple self-dual objects of C which commute with
each other,

(ii) B̃ is an integer-valued J×Jex-matrix with a skew-symmetric principal part,
(iii) for each k ∈ Jex, there exists a self-dual simple object M ′

k of C such that
there is an exact sequence in C

0 → q
⊙

bik>0

M�bik
i → qΛ̃(Mk,M

′
k)Mk ◦M ′

k →
⊙

bik<0

M
�(−bik)
i → 0,(7.1)

and M ′
k commutes with Mi for any i 	= k.

Note that M ′
k is uniquely determined by k and ({Mi}i∈J , B̃). Indeed, it follows

from qΛ̃(Mk,M
′
k)Mk ∇M ′

k �
⊙

bik<0

M
�(−bik)
i and [15, Corollary 3.7]. Note also that

if there is an epimorphism qmMk ◦M ′
k �

⊙
bik<0

M
�(−bik)
i for some m ∈ Z, then m

should coincide with Λ̃(Mk,M
′
k) by Lemma 3.1.4 and Lemma 3.2.7.

For an admissible pair ({Mi}i∈J , B̃), let Λ = (Λij)i,j∈J be the skew-symmetric
matrix given by Λij = Λ(Mi,Mj). and let D = {di}i∈J be the family of elements
of Q− given by di = wt(Mi).



388 S.-J. KANG, M. KASHIWARA, M. KIM, AND S.-J. OH

Now we can simplify the conditions in Definition 6.2.1 and Definition 6.2.3 as
follows.

Proposition 7.1.2. Let ({Mi}i∈J , B̃) be an admissible pair in C, and let M ′
k (k ∈

Jex) be as in Definition 7.1.1. Then we have the following properties:

(a) The quadruple S := ({Mi}i∈J ,−Λ, B̃,D) is a quantum monoidal seed in C.
(b) The self-dual simple object M ′

k is real for every k ∈ Jex.
(c) The quantum monoidal seed S admits a mutation in each direction k ∈ Jex.
(d) Mk and M ′

k are simply linked for any k ∈ Jex (i.e., d(Mk,M
′
k) = 1).

(e) For any j ∈ J and k ∈ Jex, we have

Λ(Mj ,M
′
k) = −Λ(Mj ,Mk)−

∑
bik<0 Λ(Mj ,Mi)bik,

Λ(M ′
k,Mj) = −Λ(Mk,Mj) +

∑
bik>0 Λ(Mi,Mj)bik.

(7.2)

Proof. Item (d) follows from the exact sequence (7.1) and Lemma 3.2.18.
Item (b) follows from the exact sequence (7.1) by applying Corollary 3.2.21 to

the case

M = Mk, N = M ′
k, X = q

⊙
bik>0

M�bik
i , and Y =

⊙
bik<0

M
�(−bik)
i .

Item (e) follows from

Λ(Mj ,Mk) + Λ(Mj ,M
′
k) = Λ(Mj ,Mk ∇M ′

k) = Λ
(
Mj ,

⊙
bik<0

M
�(−bik)
i

)
=

∑
bik<0

Λ(Mj ,Mi)(−bik)

and

Λ(Mk,Mj) + Λ(M ′
k,Mj) = Λ(M ′

k ∇Mk,Mj) = Λ
( ⊙
bik>0

M�bik
i ,Mj

)
=

∑
bik>0

Λ(Mi,Mj)bik.

Let us show (a). The conditions (i)–(v) in Definition 6.2.1 are satisfied by the
construction. The condition (vi) follows from Proposition 3.2.5 and the fact that
Mi is real simple for every i ∈ J . The condition (viii) is nothing but Lemma 3.1.2.
The condition (ix) follows easily from the fact that the weights of the first and the
last terms in the exact sequence (7.1) coincide.

Let us show the condition (vii) in Definition 6.2.1. By (7.2) and (d) of this
proposition, we have

2δjk = 2 d(Mj ,M
′
k) = −2 d(Mj ,Mk)−

∑
bik<0

Λ(Mj ,Mi)bik +
∑
bik>0

Λ(Mi,Mj)bik

= −
∑
bik<0

Λ(Mj ,Mi)bik −
∑
bik>0

Λ(Mj ,Mi)bik = −
∑
i∈J

Λ(Mj ,Mi)bik

for k ∈ Jex and j ∈ J . Thus we have shown that S is a quantum monoidal seed
in C.
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Let us show (c). Let k ∈ Jex. The exact sequence (6.4) follows from (7.1) and
the equality

Λ̃(Mk,M
′
k) =

1

2

(
(wt(Mk,M

′
k)−

∑
bik<0

Λ(Mk,Mi)bik
)
= mk,(7.3)

which is an immediate consequence of (7.2).
Similarly, taking the dual of the exact sequence (7.1), we obtain an exact se-

quence

0→
⊙

bik<0

M
�(−bik)
i →q−Λ̃(Mk,M

′
k)+(wtMk,wtM ′

k)M ′
k ◦Mk → q−1 ⊙

bik>0

M�bik
i → 0,

which gives the exact sequence (6.5).

It remains to prove that μk(S ) := ({Mi}i �=k ∪ {M ′
k}, μk(−Λ), μk(B̃), μk(D)) is

a quantum monoidal seed in C for any k ∈ Jex.
We see easily that μk(S ) satisfies the conditions (i)–(iv) and (vii)–(ix) in Defi-

nition 6.2.1.
For the condition (v), it is enough to show that for i, j ∈ J we have

μk(−Λ)ij = −Λ(μk(M)i, μk(M)j),

where μk(M)i = Mi for i 	= k and μk(M)k = M ′
k. In the case i 	= k and j 	= k, we

have

μk(−Λ)ij = −Λ(Mi,Mj) = −Λ(μk(Mi), μk(Mj)).

The other cases follow from (7.2).
The condition (vi) in Definition 6.2.1 for μk(S ) follows from Proposition 3.2.5

and the fact that {μk(M)i}i∈J is a commuting family of real simple modules. �

Now we are ready to give one of our main theorems.

Theorem 7.1.3. Let ({Mi}i∈J , B̃) be an admissible pair in C and set

S = ({Mi}i∈J ,−Λ, B̃,D)

as in Proposition 7.1.2. We set [S ]:=({q− 1
4 (wt(Mi),wt(Mi))[Mi]}i∈J ,−Λ, B̃,D). We

assume further that

The Q(q1/2)-algebra Q(q1/2) ⊗
Z[q±1]

K(C) is isomorphic to

Q(q1/2) ⊗
Z[q±1]

Aq1/2([S ]).

(7.4)

Then, for each x ∈ Jex, the pair
(
{μx(M)i}i∈J , μx(B̃)

)
is admissible in C.

Proof. In Proposition 7.1.2 (b), we have already shown that the condition (i) in

Definition 7.1.1 holds for ({μx(M)i}i∈J , μx(B̃)). The condition (ii) is clear from

the definition. Let us show (iii). Set Ni :=μx(M)i and b′ij :=μx(B̃)ij for i ∈ J and
j ∈ Jex. It is enough to show that, for any y ∈ Jex, there exists a self-dual simple
module M ′′

y ∈ C such that there is a short exact sequence

(7.5)

0 �� q
⊙

b′iy>0

N
�b′iy
i

�� qΛ̃(Ny,M
′′
y )Ny ◦M ′′

y
�� ⊙
b′iy<0

N
�(−b′iy)

i
�� 0
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and

d(Ni,M
′′
y ) = 0 for i 	= y.

If x = y, then b′iy = −bix, and hence M ′′
y = Mx satisfies the desired condition.

Assume that x 	= y and bxy = 0. Then b′iy = biy for any i and Ni = Mi for any
i 	= x. Hence M ′′

y = μy(M)y satisfies the desired condition.
We will show the assertion in the case bxy > 0. We omit the proof of the case

bxy < 0 because it can be shown in a similar way.
Recall that we have

b′iy =

{
biy + bixbxy if bix > 0,

biy if bix ≤ 0
(7.6)

for i ∈ J different from x and y.
Set

M ′
x := μx(M)x, M ′

y := μy(M)y,

C :=
⊙

bix>0

M�bix
i , S :=

⊙
bix<0, i �=y

M�−bix
i ,

P :=
⊙

biy>0,i �=x

M
�biy
i , Q :=

⊙
b′iy<0, i �=x

M
�−b′iy
i ,

A :=
⊙

b′iy≤0, bix>0

M
�bixbxy

i � ⊙
biy<0, b′iy>0, bix>0

M
�−biy
i

�
⊙

biy<0, bix>0

M
�min(bixbxy,−biy)
i ,

B :=
⊙

biy≥0, bix>0

M
�bixbxy

i � ⊙
b′iy>0, biy<0, bix>0

M
�b′iy
i .

Then using (7.6) repeatedly, we have

Q�A �
⊙

biy<0

M
�−biy
i , A�B � C�bxy , and B�P � � ⊙

b′iy>0

M
�b′iy
i .

Set

L := (M ′
x)

�bxy , V :=M�bxy
x ,

and set

X :=
⊙

biy>0

M
�biy
i � M�bxy

x �P = V �P, Y :=
⊙

biy<0

M
�−biy
i � Q�A.

Then (7.6) is read as

0 �� q(B�P ) �� qΛ̃(My,M
′′
y )My ◦M ′′

y
�� L�Q �� 0.(7.7)

Note that we have

0 → qC → qΛ̃(Mx,M
′
x)Mx ◦M ′

x → M�bxy
y �S → 0,(7.8)

0 → qX → qΛ̃(My,M
′
y)My ◦M ′

y → Y → 0.(7.9)
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Taking the convolution products of L = (M ′
x)

�bxy and (7.9), we obtain

0 �� qL ◦X �� qΛ̃(My,M
′
y)L ◦ (My ◦M ′

y) �� L ◦ Y �� 0,

0 �� qX ◦ L �� qΛ̃(My,M
′
y)(My ◦M ′

y) ◦ L �� Y ◦ L �� 0.

Since L commutes with My, we have

Λ(L, Y ) = Λ(L,My ∇M ′
y)

= Λ(L,My) + Λ(L,M ′
y) = Λ(L,My ◦M ′

y).

On the other hand, we have

Λ(M ′
x, X)− Λ(M ′

x, Y )

= Λ(M ′
x,

⊙
biy>0

M
�biy
i )− Λ(M ′

x,
⊙

biy<0

M
�−biy
i )

=
∑
biy>0

Λ(M ′
x,Mi)biy −

∑
biy<0

Λ(M ′
x,Mi)(−biy)

=
∑
i∈J

Λ(M ′
x,Mi)biy =

∑
i �=x

Λ(M ′
x,Mi)biy + Λ(M ′

x,Mx)bxy

=
∑
i �=x

Λ(M ′
x,Mi)(b

′
iy − δ(bix > 0)bixbxy) + Λ(M ′

x,Mx)bxy

=
∑
i �=x

Λ(M ′
x,Mi)b

′
iy −

∑
bix>0

Λ(M ′
x,Mi)bixbxy + Λ(M ′

x,Mx)bxy

=
(a)

0− Λ(M ′
x,

⊙
bix>0

M�bix
i )bxy + Λ(M ′

x,Mx)bxy

=
(
−Λ(M ′

x,
⊙

bix>0

M�bix
i ) + Λ(M ′

x,Mx)
)
bxy

= (−Λ(M ′
x,M

′
x ∇Mx) + Λ(M ′

x,Mx))bxy

= (−Λ(M ′
x,M

′
x)− Λ(M ′

x,Mx) + Λ(M ′
x,Mx))bxy = 0.

Note that we used the compatibility of the pair
((
−Λ(μx(Mi), μx(Mj))

)
i,j∈J

, μx(B̃)
)

when we derive the equality (a).
Since L = (M ′

x)
�bxy , the equality Λ(M ′

x, X) = Λ(M ′
x, Y ) implies

Λ(L,X) = Λ(L, Y ) = Λ(L,My ◦M ′
y).

Hence the following diagram is commutative by Proposition 3.2.8 (i):

0 �� qL ◦X ��

r
L,X

��

qΛ̃(My,M
′
y)L ◦ (My ◦M ′

y)

r
L,My◦M ′

y

��

�� L ◦ Y ��

r
L,Y �

��

0

0 �� qd+1X ◦ L �� qd+Λ̃(My,M
′
y)(My ◦M ′

y) ◦ L �� qd Y ◦ L �� 0,

where d = −Λ(L,X) = −Λ(L,My ◦ M ′
y) = −Λ(L, Y ). Note that since L =

(M ′
x)

�bxy commutes with Q and A, r
L,Y

is an isomorphism. Hence we have

Im(r
L,Y

) � L ◦ Y.
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Therefore we obtain an exact sequence

0 �� Im(r
L,X

) �� Im(r
L,My◦M ′

y
) �� L ◦ Y �� 0.(7.10)

On the other hand, r
L,My◦M ′

y
decomposes (up to a grading shift) by Lemma 3.1.5

as follows:

L ◦My ◦M ′
y

∼
r
L,My

◦M ′
y

��

r
L,My◦M ′

y

��
My ◦ L ◦M ′

y My◦rL,M ′
y

�� My ◦M ′
y ◦ L.

Since L = (M ′
x)

�bxy commutes with My, the homomorphisms r
L,My

◦ M ′
y is an

isomorphism, and hence we have

Im(r
L,My◦M ′

y
) � My ◦ (L∇M ′

y) up to a grading shift.

Similarly, r
L,X

decomposes (up to a grading shift) as follows:

L ◦ V ◦ P
r
L,V

◦P
��

r
L,X

��
V ◦ L ◦ P

V ◦r
L,P

∼ �� V ◦ P ◦ L.

Since L commutes with P , the homomorphism V ◦ r
L,P

is an isomorphism, and

hence we have

Im(r
L,X

) � (L∇ V ) ◦ P �
(
(M ′

x)
◦bxy ∇M◦bxy

x

)
◦ P up to a grading shift.

On the other hand, Lemma 3.2.22 implies that

(M ′
x)
◦bxy ∇M◦bxy

x � (M ′
x ∇Mx)

◦bxy � C◦bxy � B�A,

and hence we obtain

Im(r
L,X

) � (B�P )�A up to a grading shift.

Thus the exact sequence (7.10) becomes the exact sequence in C,

0 �� qm(B�P )�A �� qnMy ◦ (L∇M ′
y) �� (L�Q)�A �� 0(7.11)

for some m,n ∈ Z. Since (L�Q)�A is self-dual, n = Λ̃(My, L ∇ M ′
y). On the

other hand, by Proposition 3.2.13 (i) and Proposition 7.1.2 (d), we have

d(My, L∇M ′
y) ≤ d(My, L) + d(My,M

′
y) = 1.

By the exact sequence (7.11), My ◦ (L∇M ′
y) is not simple, and we conclude

d(My, L∇M ′
y) = 1.

Then Lemma 3.2.18 implies that m = 1. Thus we obtain an exact sequence in C,

0 �� q(B�P )�A �� qΛ̃(My,L∇M ′
y)My ◦ (L∇M ′

y) �� (L�Q)�A �� 0.(7.12)

Now we shall rewrite (7.12) by using • ◦A instead of • �A. We have

Λ̃(B,A) + Λ̃(A,A) = bxyΛ̃(C,A) = bxyΛ̃(M
′
x ∇Mx, A)

= bxyΛ̃(M
′
x, A) + bxyΛ̃(Mx, A) = Λ̃(L,A) + bxyΛ̃(Mx, A).
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On the other hand, the exact sequence (7.9) gives

bxyΛ̃(Mx, A) + Λ̃(P,A) = Λ̃(X,A) = Λ̃(M ′
y ∇My, A)

= Λ̃(M ′
y, A) + Λ̃(My, A) = Λ̃(My ∇M ′

y, A) = Λ̃(Y,A)

= Λ̃(Q,A) + Λ̃(A,A).

It follows that

Λ̃(B ◦ P,A) = Λ̃(B,A) + Λ̃(P,A)

=
(
Λ̃(L,A) + bxyΛ̃(Mx, A)− Λ̃(A,A)

)
+
(
Λ̃(Q,A) + Λ̃(A,A)− bxyΛ̃(Mx, A)

)
= Λ̃(L,A) + Λ̃(Q,A) = Λ̃(L ◦Q,A).

Hence we have

0 �� q(B�P ) ◦A �� qcMy ◦ (L∇M ′
y) �� (L�Q) ◦A �� 0,

where c = Λ̃(My, L∇M ′
y)− Λ̃(B�P,A) by Lemma 3.1.4.

Thus we obtain the identity in K(R-gmod),

qc[My][L∇M ′
y] =

(
q[B�P ] + [L�Q]

)
[A].

On the other hand, the hypothesis (7.4) implies that there exists
φ ∈ Q(q1/2)⊗Z[q±1] K(C) corresponding to μyμx([M ]) so that it satisfies

[My]φ = q[B�P ] + [L�Q](7.13)

and

φ[μx(M)i] = qλ
′
yi [μx(M)i]φ for i 	= y,(7.14)

where μyμx(−Λ) = (λ′
ij)i,j∈J .

Hence, in Q(q1/2)⊗Z[q±1] K(C), we have

[My]φ[A] =
(
q[B�P ] + [L�Q]

)
[A] = qc[My][L∇M ′

y].

Since Q(q1/2)⊗Z[q±1] K(C) is a domain, we conclude that

φ[A] = qc[L∇M ′
y].

On the other hand, (7.14) implies

φ[A] = ql[A]φ for some l ∈ Z.

Hence, Theorem 4.1.3 implies that, when we write

φ =
∑

b∈B(∞)

ab[Lb] for some ab ∈ Q(q1/2),

we have

Lb ◦A � qlA ◦ Lb whenever ab 	= 0.

In particular, each module Lb ◦A with ab 	= 0 is simple because A is a real simple
module. Thus we obtain

qc[L∇M ′
y] = φ[A] =

∑
b∈B(∞)

ab[Lb ◦A].
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Since L∇M ′
y is simple, there exists b0 such that Lb0 ◦A is isomorphic to L∇M ′

y

up to a grading shift, and ab = 0 for b 	= b0. Set M ′′
y := Lb0 . Then we conclude

that φ[A] = qm[M ′′
y ◦A] = qm[M ′′

y ][A] so that

φ = qm[M ′′
y ] for some m ∈ Z.

We emphasize that M ′′
y is a self-dual simple module in R-gmod which satisfies that

M ′′
y ◦A � L∇My up to a grading shift.
Now (7.13) implies

qm[My ◦M ′′
y ] = q[B�P ] + [L�Q].

Hence there exists an exact sequence

0 −−→ W −−→ qm My ◦M ′′
y −−→ Z −−→ 0,

where W = qB�P and Z = L�Q or W = L�Q and Z = qB�P . By
Lemma 3.2.18, the second case does not occur, and we have an exact sequence

0 −−→ qB�P −−→ qm My ◦M ′′
y −−→ L�Q −−→ 0.

Since My, M
′′
y , and L�Q are self-dual, we have m = Λ̃(My,M

′′
y ), and we obtain

the desired short exact sequence (7.7).
Since φ commutes with [μx(M)i] up to a power of q in K(C), and μx(M)i is real

simple, M ′′
y commutes with μx(M)i for i 	= y, by Corollary 4.1.4. �

Corollary 7.1.4. Let ({Mi}i∈J , B̃) be an admissible pair in C. Under the as-
sumption (7.4), C is a monoidal categorification of the quantum cluster algebra
Aq1/2([S ]). Furthermore, the following statements hold:

(i) The quantum monoidal seed S = ({Mi}i∈J ,−Λ, B̃,D) admits successive
mutations in all directions.

(ii) Any cluster monomial in Z[q±1/2]⊗Z[q±1] K(C) is the isomorphism class of

a real simple object in C up to a power of q1/2.
(iii) Any cluster monomial in Z[q±1/2]⊗Z[q±1] K(C) is a Laurent polynomial of

the initial cluster variables with a coefficient in Z≥0[q
±1/2].

Proof. Items (i) and (ii) are straightforward.
Let us show (iii). Let x be a cluster monomial. By the Laurent phenomenon [3],

we can write
xXc =

∑
a∈ZJ

≥0

caX
a,

where X = (Xi)i∈J is the initial cluster, c ∈ ZJ
≥0, and ca ∈ Q(q±1/2). Since x

and Xc are the isomorphism classes of simple modules up to a power of q1/2, their
product xXc can be written as a linear combination of the isomorphism classes of
simple modules with coefficients in Z≥0[q

±1/2]. Since every Xa is the isomorphism

class of a simple module up to a power of q1/2, we have ca ∈ Z≥0[q
±1/2]. �

8. Quantum coordinate rings and modified quantized

enveloping algebras

8.1. Quantum coordinate ring. Let Uq(g)
∗ be HomQ(q)(Uq(g),Q(q)). Then the

comultiplication Δ+ (see (1.1)) induces the multiplication μ on Uq(g)
∗ as follows:

μ : Uq(g)
∗⊗Uq(g)

∗ → (Uq(g)⊗Uq(g))
∗ (Δ+)∗−−−−−→ Uq(g)

∗.
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Later on, it will be convenient to use Sweedler’s notation Δ+(x) = x(1)⊗x(2). With
this notation,(

fg
)
(x) = f(x(1)) g(x(2)) for f, g ∈ Uq(g)

∗ and x ∈ Uq(g).

The Uq(g)-bimodule structure on Uq(g) induces a Uq(g)-bimodule structure on
Uq(g)

∗. Namely,

(x · f)(v) = f(vx) and (f · x)(v) = f(xv) for f ∈ Uq(g)
∗ and x, v ∈ Uq(g).

Then the multiplication μ is a morphism of a Uq(g)-bimodule, where
Uq(g)

∗⊗Uq(g)
∗ has the structure of a Uq(g)-bimodule via Δ+. That is, for f, g ∈

Uq(g)
∗ and x, y ∈ Uq(g), we have

x(fg)y = (x(1)fy(1))(x(2)gy(2)),

where Δ+(x) = x(1) ⊗x(2) and Δ+(y) = y(1) ⊗ y(2).

Definition 8.1.1. We define the quantum coordinate ring Aq(g) as follows:

Aq(g) = {u ∈ Uq(g)
∗ | Uq(g)u belongs to Oint(g) and uUq(g) belongs to Or

int(g)}.

Then, Aq(g) is a subring of Uq(g)
∗ because (i) μ is Uq(g)-bilinear, and (ii) Oint(g)

and Or
int(g) are closed under the tensor product.

We have the weight decomposition Aq(g) =
⊕

η,ζ∈P

Aq(g)η,ζ , where

Aq(g)η,ζ := {ψ ∈ Aq(g) | qhl · ψ · qhr = q〈hl,η〉+〈hr,ζ〉ψ for hl, hr ∈ P∨},
For ψ ∈ Aq(g)η,ζ , we write

wtl(ψ) = η and wtr(ψ) = ζ.

For any V ∈ Oint(g), we have the Uq(g)-bilinear homomorphism

ΦV : V ⊗(DϕV )r → Aq(g)

given by

ΦV (v⊗ψr)(a) = 〈ψr, av〉 = 〈ψra, v〉 for v ∈ V , ψ ∈ DϕV and a ∈ Uq(g).

Proposition 8.1.2 ([17, Proposition 7.2.2]). We have an isomorphism Φ of Uq(g)-
bimodules

(8.1) Φ:
⊕

λ∈P+

V (λ) ⊗
Q(q)

V (λ)r
∼−→ Aq(g)

given by Φ|V (λ)⊗Q(q) V (λ)r = Φλ := ΦV (λ). Namely,

Φ(u⊗ vr)(x) = 〈vr, xu〉 = 〈vrx, u〉 = (v, xu) for any v, u ∈ V (λ) and x ∈ Uq(g).

We introduce the crystal basis
(
Lup(Aq(g)), B(Aq(g))

)
of Aq(g) as the images

by Φ of ⊕
λ∈P+

Lup(λ)⊗ Lup(λ)r and
⊔

λ∈P+

B(λ)⊗B(λ)r.

Hence it is a crystal base with respect to the left action of Uq(g) and also the right
action of Uq(g). We sometimes write by e∗i and f∗

i the operators of Aq(g) obtained
by the right actions of ei and fi.

We define the Z[q±1]-form of Aq(g) by

Aq(g)Z[q±1] :=
{
ψ ∈ Aq(g) | 〈ψ, Uq(g)Z[q±1]〉 ⊂ Z[q±1]

}
.
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We define the bar-involution − of Aq(g) by

ψ(x) = ψ(x) for ψ ∈ Aq(g), x ∈ Uq(g).

Note that the bar-involution is not a ring homomorphism but it satisfies

ψ θ = q(wtl(ψ),wtl(θ))−(wtr(ψ),wtr(θ)) θ ψ for any ψ, θ ∈ Aq(g).

Since we do not use this formula and it is proved similarly to Proposition 8.1.4
below, we omit its proof.

The triple
(
Q⊗Aq(g)Z[q±1], L

up(Aq(g)), Lup(Aq(g))
)
is balanced [17, Theorem

1], and hence there exists an upper global basis of Aq(g),

Bup(Aq(g)) := {Gup(b) | b ∈ Bup(Aq(g))}.
For λ ∈ P+ and μ ∈ Wλ, we denote by uμ the unique member of the upper

global basis of V (λ) with weight μ. It is also a member of the lower global basis.

Proposition 8.1.3. Let λ ∈ P+, w ∈ W , and b ∈ B(λ). Then, Φ(Gup(b)⊗ur
wλ)

is a member of the upper global basis of Aq(g).

Proof. The element ψ :=Φ(Gup(b)⊗ur
wλ) is bar-invariant and a member of crystal

basis modulo qLup(Aq(g)). For any P ∈ Uq(g)Z[q±1],

〈ψ, P 〉 =
(
uwλ, PGup(b)

)
belongs to Z[q±1] because PGup(b) ∈ V up(λ)Z[q±1] and uwλ ∈ V low(λ)Z[q±1]. Hence
ψ belongs to Aq(g)Z[q±1]. �

The Q(q)-algebra anti-automorphism ϕ of Uq(g) induces a Q(q)-linear automor-
phism ϕ∗ of Aq(g) by(

ϕ∗ψ
)
(x) = ψ

(
ϕ(x)

)
for any x ∈ Uq(g).

We have
ϕ∗(Φ(u⊗ vr)

)
= Φ(v⊗ur),

and
wtl(ϕ

∗ψ) = wtr(ψ) and wtr(ϕ
∗ψ) = wtl(ψ).

It is obvious that ϕ∗ preserves Aq(g)Z[q±1], L
up(Aq(g)), and Bup(Aq(g)).

Proposition 8.1.4.

ϕ∗(ψθ) = q(wtr(ψ),wtr(θ))−(wtl(ψ),wtl(θ))(ϕ∗ψ)(ϕ∗θ).

In order to prove this proposition, we prepare a sublemma.
Let ξ be the Q(q)-algebra automorphism of Uq(g) given by

ξ(ei) = q−1
i tiei, ξ(fi) = qifit

−1
i , ξ(qh) = qh.

We can easily see

(ξ⊗ ξ) ◦Δ+ = Δ− ◦ ξ.
Let ξ∗ be the automorphism of Aq(g) given by

(ξ∗ψ)(x) = ψ(ξ(x)) for ψ ∈ Aq(g) and x ∈ Uq(g).

Sublemma 8.1.5. We have

ξ∗(ψ) = qA(wtl(ψ),wtr(ψ))ψ,

where A(λ, μ) =
1

2

(
(μ, μ)− (λ, λ)

)
.
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Proof. Let us show that, for each x, the following equality,

ψ(ξ(x)) = qA(wtl(ψ),wtr(ψ))ψ(x),(8.2)

holds for any ψ.
The equality (8.2) is obviously true for x = qh. If (8.2) is true for x, then

ξ∗(ψ)(xei) = ψ
(
ξ(xei)

)
= ψ

(
ξ(x)eiti)qi

= q(αi,wtl(ψ))+(αi,αi)/2ψ(ξ(x)ei)

= q(αi,wtl(ψ))+(αi,αi)/2
(
ξ∗(eiψ)

)
(x)

= q(αi,wtl(ψ))+(αi,αi)/2+A(wtl(ψ)+αi,wtr(ψ))(eiψ)(x).

Since ‖λ + αi‖2 = ‖λ‖2 + 2(αi, λ) + ‖αi‖2, (8.2) holds for xei. Similarly if (8.2)
holds for x, then it holds for xfi. �

Proof of Proposition 8.1.4. We have

(ϕ ◦ ϕ) ◦Δ− = Δ+ ◦ ϕ.
Hence, we have

〈ϕ∗(ψθ), x〉 = 〈ψθ, ϕ(x)〉
= 〈ψ⊗ θ,Δ+(ϕ(x))〉
= 〈ψ⊗ θ, (ϕ⊗ϕ) ◦Δ−(x)〉
= 〈ϕ∗(ψ)⊗ϕ∗(θ), Δ−(x)〉.

It follows that

〈ξ∗(ϕ∗(ψθ)), x〉 = 〈ϕ∗(ψθ), ξ(x)〉 = 〈ϕ∗(ψ)⊗ϕ∗(θ),Δ−(ξ(x))〉
= 〈ϕ∗(ψ)⊗ϕ∗(θ), (ξ⊗ ξ) ◦Δ+x〉
= 〈ξ∗ϕ∗(ψ)⊗ ξ∗ϕ∗(θ),Δ+x〉
= 〈

(
ξ∗ϕ∗(ψ)

)(
ξ∗ϕ∗(θ)

)
, x〉

= qA(wtr(ψ),wtl(ψ))+A(wtr(θ),wtl(θ))〈(ϕ∗ψ) (ϕ∗θ), x〉.
Therefore we obtain

ϕ∗(ψθ) = qc(ϕ∗ψ) (ϕ∗θ)

with

c = A(wtr(ψ),wtl(ψ)) +A(wtr(θ),wtl(θ))

−A(wtr(ψ) + wtr(θ),wtl(ψ) + wtl(θ))

= (wtr(ψ),wtr(θ))− (wtl(ψ),wtl(θ)). �

8.2. Unipotent quantum coordinate ring. Let us endow U+
q (g)⊗U+

q (g) with
the algebra structure defined by

(x1 ⊗x2) · (y1 ⊗ y2) = q−(wt(x2),wt(y1))(x1y1 ⊗x2y2).

Let Δn be the algebra homomorphism U+
q (g) → U+

q (g)⊗U+
q (g) given by

Δn(ei) = ei ⊗ 1 + 1⊗ ei.

Set

Aq(n) =
⊕

β∈Q−
Aq(n)β where Aq(n)β := (U+

q (g)−β)
∗.
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Defining the bilinear form 〈 · , · 〉 : (Aq(n)⊗Aq(n))× (U+
q (g)⊗U+

q (g)) → Q(q)
by

〈ψ⊗ θ, x⊗ y〉 = θ(x)ψ(y),

we get an algebra structure on Aq(n) given by

(ψ · θ)(x) = 〈ψ⊗ θ,Δn(x)〉 = θ(x(1))ψ(x(2)),

where Δn(x) = x(1) ⊗x(2).

Since U+
q (g) has a U+

q (g)-bimodule structure, so does Aq(n).

We define the Z[q±1]-form of Aq(n) by

Aq(n)Z[q±1] =
{
ψ ∈ Aq(n) | ψ

(
U+
q (g)Z[q±1]

)
⊂ Z[q±1]

}
,

and define the bar-involution − on Aq(n) by

ψ(x) = ψ(x) for ψ ∈ Aq(n) and x ∈ U+
q (g).

Note that the bar-involution is not a ring homomorphism but it satisfies

ψ θ = q(wt(ψ),wt(θ)) θ ψ for any ψ, θ ∈ Aq(n).

For i ∈ I, we denote by e∗i the right action of ei on Aq(n).

Lemma 8.2.1. For u, v ∈ Aq(n), we have q-boson relations

ei(uv) = (eiu)v + q(αi,wt(u))u(eiv) and e∗i (uv) = u(e∗i v) + q(αi,wt(v))(e∗i u)v.

Proof.

〈ei(uv), x〉 = 〈uv, xei〉 = 〈u⊗ v, Δn(xei)〉.
If we set Δnx = x(1) ⊗x(2), then we have

Δn(xei) = (x(1) ⊗x(2))(ei⊗ 1+1⊗ ei) = q−(αi,wt(x(2)))(x(1)ei)⊗x(2)+x(1) ⊗(x(2)ei).

Hence, we have

〈u⊗ v, Δn(xei)〉 = q−(αi,wt(x(2)))u(x(2))v(x(1)ei) + u(x(2)ei)v(x(1))

= q(αi,wt(u))u(x(2)) · (eiv)(x(1)) + (eiu)(x(2)) · v(x(1))

= 〈q(αi,wt(u))u⊗(eiv) + (eiu)⊗ v, Δnx〉.
The second identity follows in a similar way. �

We define the map ι : U−
q (g) → Aq(n) by

〈ι(u), x〉 = (u, ϕ(x)) for any u ∈ U−
q (g) and x ∈ U+

q (g).

Since ( , ) is a non-degenerate bilinear form on U−
q (g), ι is injective. The relation

〈ι(e′iu), x〉 = (e′iu, ϕ(x)) = (u, fiϕ(x)) = (u, ϕ(xei)) = 〈ι(u), xei〉 = 〈eiι(u), x〉
implies that

ι(e′iu) = eiι(u).

Lemma 8.2.2. ι is an algebra isomorphism.

Proof. The map ι is an algebra homomorphism because e′i and ei both satisfy the
same q-boson relation. �
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Hence, the algebra Aq(n) has an upper crystal basis (Lup(Aq(n)), B(Aq(n))) such
that B(Aq(n)) � B(∞). Furthermore, Aq(n) has an upper global basis

Bup(Aq(n)) = {Gup(b)} b∈B(Aq(n))

induced by the balanced triple
(
Q⊗Aq(n)Z[q±1], L

up(Aq(n)), Lup(Aq(n))
)
(see (1.3)).

There exists an injective map

ιλ : B(λ) → B(∞)

induced by the U+
q (g)-linear homomorphism ιλ : V (λ) → Aq(n) given by

v �−→
(
U+
q (g) � a �→ (av, uλ)

)
.

The map ιλ commutes with ẽi. We have

Glow
λ (b) = Glow(ιλ(b))uλ and ιλG

up
λ (b) = Gup(ιλ(b)) for any b ∈ B(λ).

Remark 8.2.3. Note that the multiplication on Aq(n) given in [11] is different
from ours. Indeed, by denoting the product of ψ and φ in [11, Section 4.2] by ψ ·φ,
for x ∈ U+

q (g), we have

(ψ · φ)(x) = ψ(x(1))φ(x(2)),

where Δ+(x) = x(1)qh(1) ⊗ x(2)qh(2) for x(1), x(2) ∈ U+
q (g), h(1), h(2) ∈ P∨. By

Lemma 8.5.3 below, we have

(ψ · φ)(x) = ψ
(
q(wt(x(1)),wt(x(2)))(x(2))

)
φ
(
x(1)

)
= q(wt(x(1),wt(x(2)))ψ(x(2))φ(x(1)) = q(wt(ψ),wt(φ))(ψφ)(x)

for x ∈ U+
q (g), where Δn(x) = x(1) ⊗x(2). In particular, we have a Q(q)-algebra

isomorphism from (Aq(n), ·) to Aq(n) given by

x �→ q−
1
2 (β,β)x for x ∈ Aq(n)β.(8.3)

Note also that the bar-involution − is a ring anti-isomorphism between Aq(n) and
(Aq(n), ·).

8.3. Modified quantum enveloping algebra. For the materials in this subsec-
tion we refer the reader to [19, 32]. We denote by Mod(g,P) the category of left
Uq(g)-modules with the weight space decomposition. Let (forget) be the functor
from Mod(g,P) to the category of vector spaces over Q(q), forgetting the Uq(g)-
module structure.

Let us denote by R the endomorphism ring of (forget). Note that R contains
Uq(g). For η ∈ P, let aη ∈ R denote the projector M → Mη to the weight space of
weight η. Then the defining relation of aη (as a left Uq(g)-module) is

qhaη = q〈h,η〉aη.

We have

aηaζ = δη,ζaη, aηP = Paη−ξ for ξ ∈ Q and P ∈ Uq(g)ξ.

Then R is isomorphic to
∏
η∈P

Uq(g)aη. We set

Ũq(g) :=
⊕
η∈P

Uq(g)aη ⊂ R.
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Then Ũq(g) is a subalgebra of R. We call it the modified quantum enveloping

algebra. Note that any Uq(g)-module in Mod(g,P) has a natural Ũq(g)-module
structure.

The (anti-)automorphisms ∗, ϕ, and ¯ of Uq(g) extend to the ones of Ũq(g) by

a∗η = a−η, ϕ(aη) = aη, aη = aη.

For a dominant integral weight λ ∈ P+, let us denote by V (λ) (resp. V (−λ)) the
irreducible module with highest (resp. lowest) weight λ (resp. −λ). Let uλ (resp.
u−λ) be the highest (resp. lowest) weight vector.

For λ ∈ P+, μ ∈ P− :=−P+, we set

V (λ, μ) := V (λ)⊗− V (μ).

Then V (λ, μ) is generated by uλ⊗−uμ as a Uq(g)-module, and the defining relation
of uλ ⊗− uμ is

qh(uλ ⊗− uμ) = q〈h,λ+μ〉(uλ ⊗− uμ),

e
1−〈hi,μ〉
i (uλ ⊗− uμ) = 0, f

1+〈hi,λ〉
i (uλ ⊗− uμ) = 0.

Let us define the Q-linear automorphism ¯ of V (λ, μ) by

P (uλ ⊗− uμ) = P (uλ ⊗− uμ).

We set

(i) Llow(λ, μ) := Llow(λ)⊗A0
Llow(μ),

(ii) V (λ, μ)Z[q±1] := V (λ)Z[q±1] ⊗Z[q±1] V (μ)Z[q±1],
(iii) B(λ, μ) :=B(λ)⊗B(μ).

Proposition 8.3.1 ([32]). (Llow(λ, μ), B(λ, μ)) is a lower crystal basis of V (λ, μ).

Furthermore,
(
Q⊗V (λ, μ)Z[q±1], L

low(λ, μ), Llow(λ, μ)
)
is balanced, and there ex-

ists a lower global basis Blow(V (λ, μ)) obtained from the lower crystal basis
(Llow(λ, μ), B(λ, μ)).

Theorem 8.3.2 ([32]). The algebra Ũq(g) has a lower crystal basis

(Llow(Ũq(g)), B(Ũq(g))) satisfying the following properties:

(i) Llow(Ũq(g)) =
⊕
λ∈P

Llow(Ũq(g)aλ) and B(Ũq(g)) =
⊔

λ∈P B(Ũq(g)aλ), where

• Llow(Ũq(g)aλ) = Llow(Ũq(g)) ∩ Uq(g)aλ and

• B(Ũq(g)aλ) = B(Ũq(g)) ∩
(
Llow(Ũq(g)aλ)/qL

low(Ũq(g)aλ)
)
.

(ii) Set Ũq(g)Z[q±1] :=
⊕
η∈P

Uq(g)Z[q±1]aη. Then
(
Q⊗ Ũq(g)Z[q±1], L

low(Ũq(g)),

Llow(Ũq(g))
)
is balanced, and Ũq(g) has the lower global basis B

low(Ũq(g)):=

{Glow(b) | b ∈ B(Ũq(g))}.
(iii) For any λ ∈ P+ and μ ∈ P−, let

Ψλ,μ : Uq(g)aλ+μ → V (λ, μ)

be the Uq(g)-linear map aλ+μ �−→ uλ ⊗uμ. Then we have

Ψλ,μ

(
L(Ũq(g)aλ+μ)

)
= Llow(λ, μ).
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(iv) Let Ψλ,μ be the induced homomorphism

Llow(Ũq(g)aλ+μ)/qL
low(Ũq(g)aλ+μ) −→ Llow(λ, μ)/qLlow(λ, μ).

Then we have
(a) {b ∈ B(Ũq(g)aλ+μ) | Ψλ,μb 	= 0} ∼−→ B(λ, μ),

(b) Ψλ,μ

(
Glow(b)

)
= Glow(Ψλ,μ(b)) for any b ∈ B(Ũq(g)aλ+μ).

(v) B(Ũq(g)) has a structure of crystal such that the injective map induced by
(iv) (a)

B(λ, μ) → B(Ũq(g)aλ+μ) ⊂ B(Ũq(g))

is a strict embedding of crystals for any λ ∈ P+ and μ ∈ P−.

For λ ∈ P, take any ζ ∈ P+ and η ∈ P− such that λ = ζ + η. Then B(ζ)⊗B(η)

is embedded into B(Ũq(g)aλ).
For μ ∈ P, let Tμ = {tμ} be the crystal with

wt(tμ) = μ, εi(tμ) = ϕi(tμ) = −∞, ẽi(tμ) = f̃i(tμ) = 0.

Since we have

B(ζ) ↪→ B(∞)⊗Tζ , B(η) ↪→ Tη ⊗B(−∞), and Tζ ⊗Tη � Tζ+η,

B(ζ)⊗B(η) is embedded into the crystal B(∞)⊗Tλ ⊗B(−∞). Taking ζ → ∞
and η → −∞, we have

Lemma 8.3.3 ([19]). For any λ ∈ P, we have a canonical crystal isomorphism

B(Ũq(g)aλ) � B(∞)⊗Tλ ⊗B(−∞).

Hence we identify

B(Ũq(g)) =
⊔
λ∈P

B(∞)⊗Tλ ⊗B(−∞).

For ξ ∈ Q− and η ∈ Q+, we shall denote by

U−
q (g)>ξ :=

⊕
ξ′∈Q−∩(ξ+Q+)\{ξ}

U−
q (g)ξ′ , U+

q (g)<η :=
⊕

η′∈Q+∩(η+Q−)\{η}
U+
q (g)η′ .

Then for any λ ∈ P, b− ∈ B(∞)ξ, and b+ ∈ B(−∞)η, we have

Glow(b− ⊗ tλ ⊗ b+)−Glow(b−)G
low(b+)aλ ∈ U−

q (g)>ξU
+
q (g)<ηaλ(8.4)

[19, (3.1.1)]. In particular, we have

Glow(b∞ ⊗ tλ ⊗ b+) = Glow(b+)aλ and Glow(b− ⊗ tλ ⊗ b−∞) = Glow(b−)aλ.

Theorem 8.3.4 ([19]).

(i) Llow(Ũq(g)) is invariant under the anti-automorphisms ∗ and ϕ.

(ii) B(Ũq(g))
∗ = ϕ(B(Ũq(g))) = B(Ũq(g)).

(iii)
(
Glow(b)

)∗
= Glow(b∗) and ϕ(Glow(b)) = Glow(ϕ(b)) for b ∈ B(Ũq(g)).

Corollary 8.3.5 ([19]). For b1 ∈ B(∞), b2 ∈ B(−∞), we have

(1) (b1 ⊗ tμ ⊗ b2)
∗ = b∗1 ⊗ t−μ−wt(b1)−wt(b2) ⊗ b∗2.

(2) ϕ(b1 ⊗ tμ ⊗ b2) = ϕ(b2)⊗ tμ+wt(b1)+wt(b2) ⊗ϕ(b1).
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We define, for b ∈ B with B = B(Ũq(g)), B(∞), or B(−∞),

ε∗i (b) = εi(b
∗), ϕ∗

i (b) = ϕi(b
∗), wt∗(b) = wt(b∗),

ẽ∗i (b) = ẽi(b
∗)∗, and f̃∗

i (b) = f̃i(b
∗)∗.

This defines another crystal structure on Ũq(g): For b1 ∈ B(∞), b2 ∈ B(−∞),
and η ∈ P, we have

ε∗i (b1 ⊗ tη ⊗ b2) = max(ε∗i (b1), ϕ
∗
i (b2) + 〈hi, η〉),

ϕ∗
i (b1 ⊗ tη ⊗ b2) = max(ε∗i (b1)− 〈hi, η〉, ϕ∗

i (b2)),

= ε∗i (b1 ⊗ tη ⊗ b2) + 〈hi,wt
∗(b1 ⊗ tη ⊗ b2)〉,

wt∗(b1 ⊗ tη ⊗ b2) = −η,

ẽ∗i (b1 ⊗ tη ⊗ b2) =

{
(ẽ∗i b1)⊗ tη−αi

⊗ b2 if ε∗i (b1) ≥ ϕ∗
i (b2) + 〈hi, η〉,

b1 ⊗ tη−αi
⊗(ẽ∗i b2) if ε∗i (b1) < ϕ∗

i (b2) + 〈hi, η〉,

f̃∗
i (b1 ⊗ tη ⊗ b2) =

{
(f̃∗

i b1)⊗ tη+αi
⊗ b2 if ε∗i (b1) > ϕ∗

i (b2) + 〈hi, η〉,
b1 ⊗ tη+αi

⊗(f̃∗
i b2) if ε∗i (b1) ≤ ϕ∗

i (b2) + 〈hi, η〉.

In particular, we have

ẽi ◦ ϕ = ϕ ◦ f̃∗
i and f̃i ◦ ϕ = ϕ ◦ ẽ∗i for every i ∈ I.

8.4. Relationship of Aq(g) and Ũq(g). There exists a canonical pairing Aq(g)×
Ũq(g) → Q(q) by

〈ψ, xaμ〉 = δμ,wtl(ψ)ψ(x) for any ψ ∈ Aq(g), x ∈ Uq(g), and μ ∈ P.

Theorem 8.4.1 ([19]). There exists a bi-crystal embedding

ιg : B(Aq(g)) −−→ B(Ũq(g))

which satisfies

〈Gup(b), ϕ(Glow(b′))〉 = δ ιg(b),b′

for any b ∈ B(Aq(g)) and b′ ∈ B(Ũq(g)).

8.5. Relationship of Aq(g) and Aq(n).

Definition 8.5.1. Let pn : Aq(g) → Aq(n) be the homomorphism induced by
U+
q (g) → Uq(g),

〈pn(ψ), x〉 = ψ(x) for any x ∈ U+
q (g).

Then we have

wt(pn(ψ)) = wtl(ψ)− wtr(ψ).

It is obvious that pn sends all Φ(uwλ ⊗ur
wλ) (λ ∈ P+ and w ∈ W ) to 1. Note

that ιg(uwλ ⊗ur
wλ) = b∞ ⊗ twλ ⊗ b−∞ ∈ B(Ũq(g)).

Proposition 8.5.2. For b ∈ B(Aq(g)), set

ιg(b) = b1 ⊗ tζ ⊗ b2 ∈ B(∞)⊗Tζ ⊗B(−∞) ⊂ B(Ũq(g))

(ζ ∈ P). Then we have

pn(G
up(b)) = δb2, b−∞Gup(b1).
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Proof. Set η := wt(b1) + ζ +wt(b2) = wtl(b). Then for any b̃ ∈ B(∞), we have〈
pn(G

up(b)), ϕ(Glow(b̃))
〉
=

〈
Gup(b), Glow(ϕ(b̃))aη

〉
=

〈
Gup(b), Glow(b∞ ⊗ tη ⊗ϕ(b̃))

〉
=

〈
Gup(b), ϕ(Glow(b̃⊗ tη−wt(b̃) ⊗ b−∞))

〉
= δ(ιg(b) = b̃⊗ tη−wt(b̃) ⊗ b−∞) = δ(b2 = b−∞, b1 = b̃). �

Hence the map pn sends the upper global basis of Aq(g) to the upper global basis
of Aq(n) or zero. Thus we have a map

pn : B(Aq(g)) → B(Aq(n))
⊔

{0}.
Although the map pn is not an algebra homomorphism, it preserves the multi-

plications up to a power of q, as we will see below.

Lemma 8.5.3. For x ∈ U+
q (g), if Δn(x) = x(1) ⊗x(2), then

Δ+(x) = qwt(x(1))x(2) ⊗x(1).(8.5)

Proof. Assume that (8.5) holds for x ∈ U+
q (g). Note that

Δn(eix) = (ei ⊗ 1+1⊗ ei)(x(1)⊗x(2)) = eix(1)⊗x(2)+q−(αi,wt(x(1)))x(1) ⊗(eix(2)).

On the other hand, we have

Δ+(eix) = (ei ⊗ 1 + qαi ⊗ ei)(q
wt(x(1))x(2) ⊗x(1))

= (eiq
wt(x1))x(2)⊗x(1) + (qαi+wt(x(1))x(2))⊗(eix(1))

= q−(αi,wt(x(1)))(qwt(x(1))eix(2))⊗x(1) + (qwt(eix(1))x(2))⊗(eix(1)).

Hence (8.5) holds for eix. �
Proposition 8.5.4. For ψ, θ ∈ Aq(g), we have

pn(ψθ) = q(wtr(ψ),wtr(θ)−wtl(θ))pn(ψ)pn(θ).

Proof. For x ∈ U+
q (g), set Δn(x) = x(1) ⊗x(2). Then, we have

〈pn(ψθ), x〉 = 〈ψθ, x〉 = 〈ψ⊗ θ, qwt(x(1))x(2) ⊗x(1)〉 = 〈ψ, qwt(x(1))x(2)〉〈θ, x(1)〉
= q(wtr(ψ),wt(x(1)))〈ψ, x(2)〉〈θ, x(1)〉
= q(wtr(ψ),wt(x(1)))〈pn(ψ), x(2)〉〈pn(θ), x(1)〉
=
(a)

q(wtr(ψ),wtr(θ)−wtl(θ))〈pn(ψ)⊗ pn(θ),Δn(x)〉

= q(wtr(ψ),wtr(θ)−wtl(θ))〈pn(ψ)pn(θ), x〉.
Here, we used wt(x(1)) = −wt

(
pn(θ)

)
in (a). �

8.6. Global basis of Ũq(g) and tensor products of Uq(g)-modules in Oint(g).
Let V be an integrable Uq(g)-module with a bar-involution −; that is, there is a

Q-linear automorphism − satisfying Pv = Pv for all P ∈ Uq(g) and for all v ∈ V .
Then, for any λ ∈ P+, there exists a unique bar-involution − on V (λ)⊗−V satisfying

(uλ ⊗− v) = uλ ⊗− v for any v ∈ V .

Indeed, there exists Ξ ∈ 1 +
∏

β∈Q+\{0} U
+
q (g)β ⊗U−

q (g)−β, which defines a bar-

involution by setting
u⊗− v := Ξ

(
u⊗− v

)
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(see [33, Chapter 4]). Assume that V has a lower crystal basis
(
L(V ), B(V )

)
and

an A-form VA such that
(
VA, L(V ), L(V )

)
is balanced. Then we have

Proposition 8.6.1. The triple
(
V (λ)A ⊗A VA, L(λ)⊗A0

L(V ), L(λ)⊗A0
L(V )

)
in

V (λ)⊗− V is balanced.

Note that uλ ⊗− Glow(b) is a lower global basis for any b ∈ B(V ), i.e.,

Glow(uλ ⊗ b) = uλ ⊗− Glow(b).
In particular, it applies to V (λ) ⊗− V (μ). Moreover, we have the following

proposition.

Proposition 8.6.2. Let λ, μ ∈ P+ and w ∈ W . Then for any b ∈ B(Ũq(g)aλ+wμ),
Glow(b)(uλ ⊗− uwμ) vanishes or is a member of the lower global basis of V (λ) ⊗−

V (μ).

Hence we have a crystal morphism

πλ,wμ : B(Ũq(g)aλ+wμ) → B(λ)⊗B(μ)(8.6)

by Glow(b)(uλ ⊗− uwμ) = Glow(πλ,wμ(b)).
Similarly, we have a bar-involution − on V ⊗+ V (λ) such that

(v ⊗
+
uλ) = v ⊗

+
uλ for any v ∈ V .

Hence if V has an upper crystal basis (Lup(V ), B(V )) and an A-form VA such that(
VA, Lup(V ), Lup(V )

)
is balanced, then V ⊗+ V (λ) has an upper global basis. Note

that Gup(b)⊗+ uλ is a member of the upper global basis for b ∈ B(V ).
In particular for λ, μ ∈ P, V (λ)⊗−V (μ) has a lower global basis and V (λ)⊗

+
V (μ)

has an upper global basis.
The bilinear form

( • , • ) :
(
V (λ)⊗− V (μ)

)
×

(
V (λ)⊗+ V (μ)

)
→ k

defined by (u⊗− v, u′ ⊗+ v′) = (u, u′)(v, v′), u, u′ ∈ V (λ), v, v′ ∈ V (μ) satisfies

(ax, y) = (x, ϕ(a)y) for any x ∈ V (λ)⊗− V (μ), y ∈ V (λ)⊗
+
V (μ), a ∈ Uq(g).

With respect to this bilinear form, the lower global basis of V (λ)⊗− V (μ) and the
upper global basis of V (λ)⊗

+
V (μ) are the dual bases of each other.

9. Quantum minors and T -systems

9.1. Quantum minors. Using the isomorphism Φ in (8.1), for each λ ∈ P+ and
μ, ζ ∈ Wλ, we define the elements

Δ(μ, ζ) := Φ(uμ ⊗ur
ζ) ∈ Aq(g)

and

D(μ, ζ) := pn(Δ(μ, ζ)) ∈ Aq(n).

The element Δ(μ, ζ) is called a (generalized) quantum minor and D(μ, ζ) is called
a unipotent quantum minor.

Lemma 9.1.1. Δ(μ, ζ) is a member of the upper global basis of Aq(g). Moreover,
D(μ, ζ) is either a member of the upper global basis of Aq(n) or zero.

Proof. Our assertions follow from Proposition 8.1.3 and Proposition 8.5.2. �
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Lemma 9.1.2 ([3, (9.13)]). For u, v ∈ W and λ, μ ∈ P+, we have

Δ(uλ, vλ)Δ(uμ, vμ) = Δ
(
u(λ+ μ), v(λ+ μ)

)
.

By Proposition 8.5.4, we have the following corollary.

Corollary 9.1.3. For u, v ∈ W and λ, μ ∈ P+, we have

D(uλ, vλ)D(uμ, vμ) = q−(vλ,vμ−uμ)D
(
u(λ+ μ), v(λ+ μ)

)
.

Note that

D(μ, μ) = 1 for μ ∈ Wλ .

Then D(μ, ζ) 	= 0 if and only if μ � ζ. Recall that for μ, ζ in the same W -orbit,
we say that μ � ζ if there exists a sequence {βk}1≤k≤l of positive real roots such
that, defining λ0 = ζ, λk = sβk

λk−1 (1 ≤ k ≤ l), we have (βk, λk−1) ≥ 0 and
λl = μ.

More precisely, we have the following lemma.

Lemma 9.1.4. Let λ ∈ P+ and μ, ζ ∈ Wλ. Then the following conditions are
equivalent:

(i) D(μ, ζ) is an element of the upper global basis of Aq(n),
(ii) D(μ, ζ) 	= 0,
(iii) uμ ∈ U−

q (g)uζ,

(iv) uζ ∈ U+
q (g)uμ,

(v) μ � ζ,
(vi) for any w ∈ W such that μ = wλ, there exists u ≤ w (in the Bruhat order)

such that ζ = uλ,
(vii) there exist u, v ∈ W such that μ = wλ, ζ = uλ, and u ≤ w.

Proof. (i) and (ii) are equivalent by Lemma 9.1.1. The equivalence of (ii), (iii),
and (iv) is obvious. The equivalence of (v), (vi), and (vii) is well known. The
equivalence of (iv) and (vi) is proved in [18]. �

For any u ∈ Aq(n) \ {0} and i ∈ I, we set

εi(u) := max {n ∈ Z≥0 | eni u 	= 0} ,
ε∗i (u) := max {n ∈ Z≥0 | e∗n

i u 	= 0} .

Then for any b ∈ B(Aq(n)), we have

εi(G
up(b)) = εi(b) and ε∗i (G

up(b)) = ε∗i (b).

Lemma 9.1.5. Let λ ∈ P+, μ, ζ ∈ Wλ such that μ � ζ and i ∈ I.

(i) If n := 〈hi, μ〉 ≥ 0, then

εi(D(μ, ζ)) = 0 and e
(n)
i D(siμ, ζ) = D(μ, ζ).

(ii) If 〈hi, μ〉 ≤ 0 and siμ � ζ, then εi(D(μ, ζ)) = −〈hi, μ〉.
(iii) If m :=−〈hi, ζ〉 ≥ 0, then

ε∗i (D(μ, ζ)) = 0 and e∗i
(m)D(μ, siζ) = D(μ, ζ).

(iv) If 〈hi, ζ〉 ≥ 0 and μ � siζ, then ε∗i (D(μ, ζ)) = 〈hi, ζ〉.
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Proof. We have εi
(
Δ(μ, ζ)

)
= max(−〈hi, μ〉, 0) and ε∗i

(
Δ(μ, ζ)

)
= max(〈hi, ζ〉, 0).

Moreover, pn commutes with e
(n)
i and e∗i

(n).

Let us show (ii). Set � = −〈hi, μ〉. Then we have e
+1
i Δ(μ, ζ) = 0, which implies

e
+1
i D(μ, ζ) = 0. Hence εi(D(μ, ζ)) ≤ �. We have

e
(
)
i Δ(μ, ζ) = Δ(siμ, ζ).

Hence we have e
(
)
i D(μ, ζ) = D(siμ, ζ). By the assumption siμ � ζ, D(siμ, ζ) does

not vanish. Hence we have εi(D(μ, ζ)) ≥ �.
The other statements can be proved similarly. �

Proposition 9.1.6 ([3, (10.2)]). Let λ, μ ∈ P+ and s, t, s′, t′ ∈ W such that �(s′s) =
�(s′) + �(s) and �(t′t) = �(t′) + �(t). Then we have

(i) Δ(s′sλ, t′λ)Δ(s′μ, t′tμ) = q(sλ,μ)−(λ,tμ)Δ(s′μ, t′tμ)Δ(s′sλ, t′λ).
(ii) If we assume further that s′sλ � t′λ and s′μ � t′tμ, then we have

D(s′sλ, t′λ)D(s′μ, t′tμ) = q(s
′sλ+t′λ, s′μ−t′tμ)D(s′μ, t′tμ)D(s′sλ, t′λ),(9.1)

or equivalently

q(t
′λ, t′tμ−s′μ)D(s′sλ, t′λ)D(s′μ, t′tμ) = q(s

′μ−t′tμ, s′sλ)D(s′μ, t′tμ)D(s′sλ, t′λ).

(9.2)

Note that (ii) follows from Proposition 8.5.4 and (i). Note also that both sides
of (9.2) are bar-invariant, and hence they are members of the upper global basis as
seen by Corollary 4.1.5.

Proposition 9.1.7. For λ, μ ∈ P+ and s, t ∈ W , set ιg
(
usλ ⊗(uλ)

r
)

=

b− ⊗ tλ ⊗ b−∞ and ιg
(
uμ ⊗(utμ)

r
)
= b∞ ⊗ ttμ ⊗ b+ with b∓ ∈ B(±∞). Then we

have

Δ(sλ, λ)Δ(μ, tμ) = Gup
(
ιg

−1(b− ⊗ tλ+tμ ⊗ b+)
)
.

Proof. Recall that there is a pairing ( • , • ) :
(
V (λ)⊗− V (μ)

)
×

(
V (λ)⊗

+
V (μ)

)
→

Q(q) defined by (u⊗− v, u′ ⊗+ v′) = (u, u′)(v, v′). It satisfies(
P (u⊗− v), u′ ⊗+ v′

)
=

(
u⊗− v, ϕ(P )(u′ ⊗+ v′)

)
for any P ∈ Uq(g).

For u, u′ ∈ V (λ) and v, v′ ∈ V (μ), we have

〈Φ(u⊗u′r)Φ(v⊗ v′r), P 〉 =
(
u′ ⊗− v′, P (u⊗+ v)

)
=

(
ϕ(P )(u′ ⊗− v′), u⊗

+
v
)
.

Hence for P ∈ Uq(g), we have

〈Δ(sλ, λ)Δ(μ, tμ), Paζ〉 = δ(ζ = sλ+ μ)
(
ϕ(P )(uλ ⊗− utμ), usλ ⊗+ uμ

)
.

If Paζ = Glow(ϕ(b)) for b ∈ B(Ũq(g)), then we have

〈Δ(sλ, λ)Δ(μ, tμ), ϕ(Glow(b))〉 = δ(ζ = sλ+ μ)
(
Glow(b)(uλ ⊗− utμ), usλ ⊗+ uμ

)
.

The element Glow(b)(uλ ⊗− utμ) vanishes or is a global basis of V (λ) ⊗− V (μ)
by Proposition 8.6.2. Since usλ ⊗+ uμ is a member of the upper global basis of
V (λ)⊗

+
V (μ), we have

〈Δ(sλ, λ)Δ(μ, tμ), ϕ(Glow(b))〉 = δ(ζ = sλ+ μ)δ
(
πλ,tμ(b) = usλ ⊗uμ

)
.

Here πλ,tμ : B(Ũq(g)aλ+tμ) → B(λ)⊗B(μ) is the crystal morphism given in (8.6).
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Hence we obtain

Δ(sλ, λ)Δ(μ, tμ) = Gup(ιg
−1(b)),

where b ∈ B(Ũq(g)) is a unique element such that(
Glow(b)(uλ ⊗− usμ), usλ ⊗

+
uμ

)
= 1

. On the other hand, we have Glow(b+)utμ = uμ and Glow(b−)uλ = usλ. The last
equality implies ϕ(Glow(b−))usλ = uλ because

(ϕ(Glow(b−))usλ, uλ) = (usλ, G
low(b−)uλ) = (usλ, usλ) = 1.

As seen in (8.4), we have

Glow(b−)G
low(b+)aλ+tμ −Glow(b− ⊗ tλ+tμ ⊗ b+) ∈ U−

q (g)>sλ−λU
+
q (g)<μ−tμaλ+tμ.

Hence we obtain(
Glow(b− ⊗ tλ+tμ ⊗ b+)(uλ ⊗− utμ), usλ ⊗

+
uμ

)
=

(
Glow(b−)G

low(b+)(uλ ⊗− utμ), usλ ⊗
+
uμ

)
=

(
Glow(b+)(uλ ⊗− utμ), ϕ(G

low(b−))(usλ ⊗+ uμ)
)
= 1.

In the last equality, we used Glow(b+)(uλ⊗−utμ) = uλ⊗− (G
low(b+)utμ) = uλ⊗−uμ

and ϕ(Glow(b−))(usλ ⊗+ uμ) =
(
ϕ(Glow(b−))usλ)⊗+ uμ = uλ ⊗+ uμ.

Hence we conclude that b = b− ⊗ tλ+tμ ⊗ b+. �

Let

ιλ,μ : V (λ+ μ) � V (λ)⊗V (μ)

be the canonical embedding and

ιλ,μ : B(λ+ μ) � B(λ)⊗B(μ)

the induced crystal embedding.

Lemma 9.1.8. For λ, μ ∈ P+ and x, y ∈ W such that x ≥ y, we have

uxλ ⊗ uyμ ∈ ιλ,μ(B(λ+ μ)) ⊂ B(λ)⊗ B(μ).

Proof. Let us show by induction on �(x) the length of x in W . We may assume
that x 	= 1. Then there exists i ∈ I such that six < x. If siy < y, then six ≥ siy
and ẽmax

i (uxλ ⊗ uyμ) = usixλ ⊗ usiyμ. If siy > y, then six ≥ y and ẽmax
i (uxλ ⊗

uyμ) = usixλ ⊗ uyμ. In both cases, uxλ ⊗ uyμ is connected with an element of
ιλ,μ(B(λ+ μ)). �

Lemma 9.1.9. For λ, μ ∈ P+ and w ∈ W , we have

Δ(wλ, λ)Δ(μ, μ) = Gup
(
ι−1
λ,μ(uwλ ⊗uμ)⊗uλ+μ

r
)
.

Proof. We have

ιg(uwλ ⊗ur
λ

)
= bwλ ⊗ tλ ⊗ b−∞,

ιg(uμ ⊗ur
μ

)
= b∞ ⊗ tμ ⊗ b−∞,

where bwλ := ιλ(uwλ). Hence Proposition 9.1.7 implies that

Δ(wλ, λ)Δ(μ, μ) = Gup
(
ιg

−1(bwλ ⊗ tλ+μ ⊗ b−∞)
)
.

Then, ιg
(
ι−1
λ,μ(uwλ ⊗uμ)⊗uλ+μ

r
)
= bwλ ⊗ tλ+μ ⊗ b−∞ gives the desired result. �
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9.2. T -system. In this subsection, we recall the T -system among the (unipotent)
quantum minors for later use (see [25] for T -system).

Proposition 9.2.1 ([11, Proposition 3.2]). Assume that the Kac–Moody algebra g

is of symmetric type. Assume that u, v ∈ W and i ∈ I satisfy u < usi and v < vsi.
Then

Δ(usi�i, vsi�i)Δ(u�i, v�i) = q−1Δ(usi�i, v�i)Δ(u�i, vsi�i) + Δ(uλ, vλ),

Δ(u�i, v�i)Δ(usi�i, vsi�i) = qΔ(u�i , vsi�i)Δ(usi�i, v�i) + Δ(uλ, vλ),

and

q(vsi�i,v�i−u�i)D(usi�i, vsi�i)D(u�i, v�i)

= q−1+(v�i,vsi�i−u�i)D(usi�i, v�i)D(u�i, vsi�i) + D(uλ, vλ)

= q−1+(vsi�i,v�i−usi�i)D(u�i, vsi�i)D(usi�i, v�i) + D(uλ, vλ),

q(v�i,vsi�i−usi�i)D(u�i, v�i)D(usi�i, vsi�i)

= q1+(vsi�i,v�i−usi�i)D(u�i, vsi�i)D(usi�i, v�i) + D(uλ, vλ)

= q1+(v�i,vsi�i−u�i)D(usi�i, v�i)D(u�i, vsi�i) + D(uλ, vλ),

where λ = si�i +�i.

Note that the difference of λ and −
∑
j �=i

aj,i�j are W -invariant. Hence we have

D(uλ, vλ) =
∏
j �=i

D(u�j , v�j)
−aj,i from Corollary 9.1.3, by disregarding a power of

q.

9.3. Revisit of crystal bases and global bases. In order to prove Theorem 9.3.3
below, we first investigate the upper crystal lattice of DϕV induced by an upper
crystal lattice of V ∈ Oint(g).

Let V be a Uq(g)-module in Oint(g). Let Lup be an upper crystal lattice of V .
Then we have (see Lemma 1.3.1)⊕

ξ∈P

q(ξ,ξ)/2(Lup)ξ is a lower crystal lattice of V .

Recall that, for λ ∈ P+, the upper crystal lattice Lup(λ) and the lower crystal
lattice Llow(λ) of V (λ) are related by

Lup(λ) =
⊕
ξ∈P

q((λ,λ)−(ξ,ξ))/2Llow(λ)ξ ⊂ Llow(λ).(9.3)

Write

V �
⊕

λ∈P+

Eλ ⊗ V (λ)

with finite-dimensional Q(q)-vector spaces Eλ. Accordingly, we have a canonical
decomposition

Lup �
⊕

λ∈P+

Cλ ⊗A0
Lup(λ),

where Cλ ⊂ Eλ is an A0-lattice of Eλ.
On the other hand, we have

DϕV �
⊕

λ∈P+

E∗
λ ⊗ V (λ).



MONOIDAL CATEGORIFICATION OF CLUSTER ALGEBRAS 409

Note that we have

ΦV ((a⊗ u)⊗ (b⊗ v)r) = 〈a, b〉Φλ(u⊗ vr) for u, v ∈ V (λ) and a ∈ Eλ, b ∈ E∗
λ.

We define the induced upper crystal lattice DϕL
up of DϕV by

DϕL
up :=

⊕
λ∈P+

C∨
λ ⊗A0

Lup(λ) ⊂ DϕV,

where C∨
λ := {u ∈ E∗

λ | 〈u,Cλ〉 ⊂ A0}. Then we have

ΦV (Lup ⊗ (DϕL
up)r) ⊂ Lup(Aq(g)).

Indeed, we have

DϕL
up = {u ∈ DϕV | ΦV (L

up ⊗ ur) ⊂ Lup(Aq(g))} .
Since (Lup(λ))∨ = Llow(λ), we have

(Lup)∨ =
⊕

λ∈P+

C∨
λ ⊗A0

Llow(λ).

The properties Lup(λ) ⊂ Llow(λ) and Lup(λ)λ = Llow(λ)λ imply the following
lemma.

Lemma 9.3.1. DϕL
up is the largest upper crystal lattice of DϕV contained in the

lower crystal lattice (Lup)∨.

Let λ, μ ∈ P+. Then
(
Lup(λ)⊗

+
Lup(μ)

)∨
= Llow(λ)⊗−L

low(μ) is a lower crystal

lattice of Dϕ

(
V (λ)⊗

+
V (μ)

)
� V (λ)⊗−V (μ). Let Ξλ,μ : V (λ)⊗

+
V (μ) ∼−−→V (λ)⊗−

V (μ) � Dϕ

(
V (λ)⊗+ V (μ)

)
be the Uq(g)-module isomorphism defined by

Ξλ,μ(u⊗
+
v) = q(λ,μ)−(ξ,η)

(
u⊗− v

)
for u ∈ V (λ)ξ and v ∈ V (μ)η.

Then

L̃ := Ξλ,μ

(
Lup(λ)⊗

+
Lup(μ)

)
=

⊕
ξ,η∈P

q(λ,μ)−(ξ,η)Lup(λ)ξ ⊗− Lup(μ)η

is an upper crystal lattice of V (λ) ⊗− V (μ). Since we have (λ, μ) − (ξ, η) ≥ 0 for

any ξ ∈ wt
(
V (λ)

)
and η ∈ wt

(
V (μ)

)
, Lemma 9.3.1 implies that

L̃ ⊂ Dϕ

(
Lup(λ)⊗+ Lup(μ)

)
.(9.4)

Lemma 9.3.2. Let λ, μ ∈ P+ and x1, x2, y1, y2 ∈ W such that xk ≥ yk (k = 1, 2).
Then we have

(9.5)
q(λ,μ)−(x2λ,y2μ)Δ(x1λ, x2λ)Δ(y1μ, y2μ)

≡ Gup(ι−1
λ,μ(ux1λ ⊗ uy1μ)⊗ ι−1

λ,μ(ux2λ ⊗ uy2μ)
r) mod qLup(Aq(g)).

Proof. By the definition, we have

Δ(x1λ, x2λ)Δ(y1μ, y2μ) = ΦV (λ)⊗
+
V (μ)

(
(ux1λ ⊗

+
uy1μ)⊗(ux2λ ⊗− uy2μ)

r
)
.

Hence we have

q(λ,μ)−(x2λ,y2μ)Δ(x1λ, x2λ)Δ(y1μ, y2μ)

= ΦV (λ)⊗
+
V (μ)

(
(ux1λ ⊗+ uy1μ)⊗ q(λ,μ)−(x2λ,y2μ)(ux2λ ⊗− uy2μ)

r
)

= ΦV (λ)⊗
+
V (μ)

(
(ux1λ ⊗

+
uy1μ)⊗

(
Ξλ,μ(ux2λ ⊗

+
uy2μ)

)r)
.
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The right-hand side of (9.5) can be calculated as follows. Let us take vk ∈ Lup(λ+μ)
such that ιλ,μ(vk)−uxkλ⊗+

uykμ ∈ qLup(λ)⊗
+
Lup(μ) for k = 1, 2. Here ιλ,μ : V (λ+

μ) → V (λ)⊗+ V (μ) denotes the canonical Uq(g)-module homomorphism and such
a vk exists by Lemma 9.1.8.

Then we have

Gup
(
ι −1
λ,μ (ux1λ ⊗uy1μ)⊗

(
ι −1
λ,μ (ux2λ ⊗uy2μ)

)r)
≡ Φλ+μ(v1 ⊗ vr

2) mod qLup(Aq(g))

= ΦV (λ)⊗
+
V (μ)

(
ιλ,μ(v1)⊗

(
Ξλ,μιλ,μ(v2)

)r)
.

The last equality follows from (v2, u) = (Ξλ,μιλ,μ(v2), ιλ,μ(u)) for all u ∈ V (λ+ μ).
On the other hand, we have

ιλ,μ(v1) ≡ ux1λ ⊗+ uy1μ mod qLup(λ)⊗+ Lup(μ)

and
Ξλ,μ

(
ιλ,μ(v2)

)
≡ Ξλ,μ(ux2λ ⊗

+
uy2μ) mod qL̃.

Hence

ΦV (λ)⊗
+
V (μ)

(
(ux1λ ⊗

+
uy1μ)⊗Ξλ,μ(ux2λ ⊗

+
uy2μ)

r
)

≡ ΦV (λ)⊗
+
V (μ)

(
(ιλ,μ(v1)⊗(Ξλ,μιλ,μ(v2))

r
)

mod qLup(Aq(g))

by (9.4), as desired. �
Theorem 9.3.3. Let λ ∈ P+ and x, y ∈ W such that x ≥ y. Then we have

D(xλ, yλ)D(yλ, λ) ≡ D(xλ, λ) mod qLup(Aq(n)).

Proof. Applying pn to (9.5), we have

D(xλ, yλ)D(yλ, λ)

≡ pn

(
Gup(ι−1

λ,λ(uxλ ⊗ uyλ)⊗ ι−1
λ,λ(uyλ ⊗ uλ)

r)
)

mod qLup(Aq(n)).

Hence the desired result follows from Proposition 8.5.2, Proposition 8.5.4, and
Lemma 9.3.4 below. �
Lemma 9.3.4. Let λ ∈ P+ and x, y ∈ W such that x ≥ y. Then we have

ιg

(
ι −1
λ,λ (uxλ ⊗uyλ)⊗

(
ι −1
λ,λ (uyλ ⊗uλ)

)r)
= ιλ(uxλ)⊗ tyλ+λ ⊗ b−∞.

Proof. We shall argue by induction on �(x). We set bxλ = ιλ(uxλ). Since the case
x = 1 is obvious, assume that x 	= 1. Take i ∈ I such that x′ := six < x.

(a) First assume that siy > y. Then we have y ≤ x′. Hence by the induction
hypothesis,

ιg

(
ι −1
λ,λ (ux′λ ⊗uyλ)⊗

(
ι −1
λ,λ (uyλ ⊗uλ)

)r)
= bx′λ ⊗ tyλ+λ ⊗ b−∞.(9.6)

We have ϕi(ux′λ) = 〈hi, x
′λ〉 and ϕi(bx′λ ⊗ tyλ+λ ⊗ b−∞) = ϕi(bx′λ ⊗ tyλ+λ) =

〈hi, x
′λ〉+ 〈hi, yλ〉 ≥ 〈hi, x

′λ〉. Hence, applying f̃
〈hi,x

′λ〉
i to (9.6), we obtain

ιg

(
ι −1
λ,λ (uxλ ⊗uyλ)⊗

(
ι −1
λ,λ (uyλ ⊗uλ)

)r)
= bxλ ⊗ tyλ+λ ⊗ b−∞.

(b) Assume that y′ := siy < y. Then we have y′ ≤ x′, and the induction
hypothesis implies that

ιg

(
ι −1
λ,λ (ux′λ ⊗uy′λ)⊗

(
ι −1
λ,λ (uy′λ ⊗uλ)

)r)
= bx′λ ⊗ ty′λ+λ ⊗ b−∞.
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Apply ẽ
∗ 〈hiy

′λ〉
i f̃

〈hi,x
′λ+y′λ〉

i to both sides. Then the left-hand side yields

ιg

(
ι −1
λ,λ (uxλ ⊗uyλ)⊗

(
ι −1
λ,λ (uyλ ⊗uλ)

)r)
.

Since ϕi(bx′λ ⊗ ty′λ+λ) = 〈hi, x
′λ〉 + 〈hi, y

′λ + λ〉 ≥ 〈hi, x
′λ + y′λ〉, the right-hand

side yields

ẽ
∗ 〈hi,y

′λ〉
i f̃

〈hi,x
′λ+y′λ〉

i

(
bx′λ ⊗ ty′λ+λ ⊗ b−∞

)
= ẽ

∗ 〈hi,y
′λ〉

i

(
(f̃

〈hi,x
′λ+y′λ〉

i bx′λ)⊗ ty′λ+λ ⊗ b−∞
)

= ẽ
∗ 〈hi,y

′λ〉
i

(
(f̃

〈hi,y
′λ〉

i bxλ)⊗ ty′λ+λ ⊗ b−∞
)
.

Since ε∗i (bxλ) = −ϕi(bxλ) = 〈hi, λ〉 and f̃
〈hi,y

′λ〉
i bxλ = f̃

∗ 〈hi,y
′λ〉

i bxλ, we have

ẽ
∗ 〈hi,y

′λ〉
i

(
(f̃

〈hi,y
′λ〉

i bxλ)⊗ ty′λ+λ ⊗ b−∞
)
= bxλ ⊗ tyλ+λ ⊗ b−∞. �

9.4. Generalized T -system. The T -system in Section 9.2 can be interpreted as
a system of equations among the three products of elements in Bup(Aq(g)) or
Bup(Aq(n)). In this subsection, we introduce another among the three products of
elements in Bup(Aq(g)), called a generalized T -system.

Proposition 9.4.1. Let μ ∈ W�i, and set b = ι�i
(uμ) ∈ B(∞). Then we have

(9.7)

Δ(μ, si�i)Δ(�i, �i) = q−1
i Gup

(
ι−1
�i,�i

(uμ ⊗ u�i
)⊗

(
ι−1
�i,�i

(usi�i
⊗ u�i

)
)r)

+Gup
(
ι−1
�i+si�i

(ẽ∗i b)⊗ ur
�i+si�i

)
.

Note that if μ = �i, then b = 1 and the last term in (9.7) vanishes. If μ 	= �i,
then ε∗i (b) = 1 and ι−1

�i+si�i
(ẽ∗i b) ∈ B(�i + si�i), uμ ⊗ u�i

∈ ι�i,�i
B(2�i).

Proof. In the sequel, we omit ι−1
�i,�i

for the sake of simplicity. Set

u = Δ(μ, si�i)Δ(�i, �i)− q−1
i Gup ((uμ ⊗ u�i

)⊗ (usi�i
⊗ u�i

)r) .

Then wtr(u) = λ :=�i + si�i.
It is obvious that we have ufj = 0 for j 	= i. Since ẽi(usi�i

⊗ u�i
) = u�i

⊗ u�i
,

we have

Gup ((uμ ⊗ u�i
)⊗ (usi�i

⊗ u�i
)r) fi = Gup ((uμ ⊗ u�i

)⊗ (u�i
⊗ u�i

)r)

= Δ(μ,�i)Δ(�i, �i)

= Gup(uμ ⊗ ur
�i

)Gup(u�i
⊗ ur

�i
).

Here the second equality follows from Lemma 9.1.9 and the third follows from
Proposition 8.1.3. On the other hand, we have

(Δ(μ, si�i)Δ(�i, �i)) fi = (Δ(μ, si�i)fi)
(
Δ(�i, �i)t

−1
i

)
= q−1

i Δ(μ,�i)Δ(�i, �i).

Hence we have ufi = 0. Thus, u is a lowest weight vector of weight λ with respect
to the right action of Uq(g). Therefore there exists some v ∈ V (λ) such that

u = Φ(v ⊗ ur
λ).
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Hence we have pn(u) = ιλ(v) ∈ Aq(n). On the other hand, we have

pn (Δ(μ, si�i)Δ(�i, �i)) = pn (Δ(μ, si�i)) pn (Δ(�i, �i))

= D(μ, si�i) = Gup(ẽ∗i b)

= ιλ
(
Gup

λ

(
ι−1
λ (ẽ∗i b)

))
.

Note that since ε∗i (ẽ
∗
i b) = 0 and ε∗j (ẽ

∗
i b) ≤ −〈hj , αi〉 for j 	= i, we have ẽ∗i b ∈

ιλ(B(λ)).
Hence in order to prove our assertion, it is enough to show that

pn
(
Gup

(
(uμ ⊗ u�i

)⊗ (usi�i
⊗ u�i

)r
))

= 0.

This follows from Proposition 8.5.2 and

ιg ((uμ ⊗ u�i
)⊗ (usi�i

⊗ u�i
)r) = b⊗ tλ ⊗ ẽib−∞.(9.8)

Let us prove (9.8). Since

(uμ ⊗ u�i
)⊗ (usi�i

⊗ u�i
)r = ẽ∗i

(
(uμ ⊗ u�i

)⊗ (u�i
⊗ u�i

)r
)
,

the left-hand side of (9.8) is equal to

ẽ∗i
(
ιg
(
(uμ ⊗ u�i

)⊗ (u�i
⊗ u�i

)r
))

= ẽ∗i (b⊗ t2�i
⊗ b−∞).

Since ε∗i (b) = 1 < 〈hi, 2�i〉 = 2, we obtain

ẽ∗i (b⊗ t2�i
⊗ b−∞) = b⊗ t2�i−αi

⊗ ẽ∗i b−∞ = b⊗ tλ ⊗ ẽib−∞. �

10. KLR algebras and their modules

10.1. Chevalley and Kashiwara operators. Let us recall the definition of sev-
eral functors on modules over KLR algebras which are used to categorify U−

q (g)∨
Z[q±1].

Definition 10.1.1. Let β ∈ Q+.

(i) For i ∈ I and 1 ≤ a ≤ |β|, set

ea(i) =
∑

ν∈Iβ ,νa=i

e(ν) ∈ R(β).

(ii) We take conventions

EiM = e1(i)M,

E∗
i M = e|β|(i)M,

which are functors from R(β)-gmod to R(β − αi)-gmod.
(iii) For a simple module M , we set

εi(M) = max {n ∈ Z≥0 | En
i M 	= 0} ,

ε∗i (M) = max {n ∈ Z≥0 | E∗ n
i M 	= 0} ,

F̃iM = q
εi(M)
i L(i)∇M,

F̃ ∗
i M = q

ε∗i (M)
i M ∇ L(i),

ẼiM = q
1−εi(M)
i soc(EiM) � q

εi(M)−1
i hd(EiM),

Ẽ∗
i M = q

1−ε∗i (M)
i soc(E∗

i M) � q
ε∗i (M)−1
i hd(E∗

i M),

Ẽmax
i M = Ẽ

εi(M)
i M and Ẽ∗ max

i M = Ẽ
∗ ε∗i (M)
i M.



MONOIDAL CATEGORIFICATION OF CLUSTER ALGEBRAS 413

(iv) For i ∈ I and n ∈ Z≥0, we set

L(in) = q
n(n−1)/2
i L(i) ◦ · · · ◦ L(i)︸ ︷︷ ︸

n

.

Here L(i) denotes the R(αi)-module R(αi)/R(αi)x1. Then L(in) is a self-
dual real simple R(nαi)-module.

Note that, under the isomorphism in Theorem 2.1.2, the functors Ei and E∗
i

correspond to the linear operators ei and e∗i on Aq(n)Z[q±1] = ι(U−
q (g)∨

Z[q±1]) ⊂
Aq(n), respectively. Note also that, for a simple R(β)-module S, we have ẼiF̃iS �
S, and F̃iẼiS � S if εi(M) > 0.

In the course of proving the following propositions, we use the following nota-
tions:

Qi,j(xa, xa+1, xa+2) :=
Qi,j(xa, xa+1)−Qi,j(xa+2, xa+1)

xa − xa+2
.(10.1)

Then we have

τa+1τaτa+1 − τaτa+1τa =
∑
i,j∈I

Qi,j(xa, xa+1, xa+2)ea(i)ea+1(j)ea+2(i).

Proposition 10.1.2. Let β ∈ Q+ with n = |β|. Assume that an R(β)-module
M satisfies EiM = 0. Then the left R(αi)-module homomorphism R(αi)⊗M −→
q(αi,β)M ◦R(αi) given by

e(i)⊗u �−→ τ1 · · · τn(u⊗ e(i))(10.2)

extends uniquely to an (R(αi + β), R(αi))-bilinear homomorphism

R(αi) ◦M −→ q(αi,β)M ◦R(αi).(10.3)

Proof. (i) First note that, for 1 ≤ a ≤ n,
(10.4)

τ1 · · · τa−1ea(i)τa+1 · · · τn
(
u⊗ e(i)

)
= τa+1 · · · τn

(
e1(i)τ1 · · · τa−1(u⊗ e(i))

)
= 0

since EiM = 0.
(ii) In order to see that (10.3) is a well-defined R(αi + β)-linear homomorphism, it
is enough to show that (10.2) is R(β)-linear.
(a) Commutation with xa ∈ R(β) (1 ≤ a ≤ n): We have

xa+1τ1 · · · τn
(
u⊗ e(i)

)
= τ1 · · · τa−1xa+1τa · · · τn

(
u⊗ e(i)

)
= τ1 · · · τa−1

(
τaxa + ea(i)

)
τa+1 · · · τn

(
u⊗ e(i)

)
= τ1 · · · τnxa

(
u⊗ e(i)

)
by (10.4).



414 S.-J. KANG, M. KASHIWARA, M. KIM, AND S.-J. OH

(b) Commutation with τa ∈ R(β) (1 ≤ a < n): We have

τa+1τ1 · · · τn
(
u⊗ e(i)

)
= τ1 · · · τa−1(τa+1τaτa+1)τa+2 · · · τn

(
u⊗ e(i)

)
= τ1 · · · τa−1

(
τaτa+1τa+

∑
j

Qi,j(xa, xa+1, xa+2)ea(i)ea+1(j)
)
τa+2 · · · τn

(
u⊗ e(i)

)
= τ1 · · · τnτa

(
u⊗ e(i)

)
+

∑
j

τ1 · · · τa−1Qi,j(xa, xa+1, xa+2)ea(i)ea+1(j)τa+2 · · · τn
(
u⊗ e(i)

)
.

The last term vanishes because EiM = 0 implies

τ1 · · · τa−1f(xa, xa+1)g(xa+2)ea(i)τa+2 · · · τn
(
u⊗ e(i)

)
= g(xa+2)τa+2 · · · τne1(i)τ1 · · · τa−1f(xa, xa+1)

(
u⊗ e(i)

)
= 0

for any polynomial f(xa, xa+1) and g(xa+2).
(iii) Now let us show that (10.3) is right R(αi)-linear. By (10.4), we have

τ1 · · · τa−1xaτa · · · τn
(
u⊗ e(i)

)
= τ1 · · · τa−1

(
τaxa+1 − ea(i)

)
τa+1 · · · τn

(
u⊗ e(i)

)
= τ1 · · · τaxa+1τa+1 · · · τn

(
u⊗ e(i)

)
for 1 ≤ a ≤ n. Therefore we have

x1τ1 · · · τn
(
u⊗ e(i)

)
= τ1 · · · τnxn+1

(
u⊗ e(i)

)
= τ1 · · · τn

(
u⊗ e(i)x1

)
. �

Recall that form,n ∈ Z≥0, we denote by w[m,n] the element ofSm+n defined by

w[m,n](k) =

{
k + n if 1 ≤ k ≤ m,

k −m if m < k ≤ m+ n.
(10.5)

Set τw[m,n] := τi1 · · · τir , where si1 · · · sir is a reduced expression of w[m,n]. Note
that τw[m,n] does not depend on the choice of reduced expression [14, Corollary
1.4.3].

Proposition 10.1.3. Let M ∈ R(β)-gmod and N ∈ R(γ)-gmod, and set m = |β|
and n = |γ|. If EiM = 0 for any i ∈ supp(γ), then

v⊗u �−→ τw[m,n](u⊗ v)

gives a well-defined R(β + γ)-linear homomorphism N ◦M −→ q(β,γ)M ◦N .

Proof. The proceeding proposition implies that

v⊗u �−→ τw[m,n](u⊗ v) for u ∈ M, v ∈ R(γ)

gives a well-defined R(β + γ)-linear homomorphism R(γ) ◦M → M ◦R(γ). Hence
it is enough to show that it is right R(γ)-linear. Since we know that it commutes
with the right multiplication of xk, it is enough to show that it commutes with the
right multiplication of τk. For this, we may assume that n = 2 and k = 1. Set
γ = αi + αj .

Thus we have reduced the problem to the equality

τ1(τ2τ1) · · · (τm+1τm)
(
u⊗ e(i)⊗ e(j)

)
= (τ2τ1) · · · (τm+1τm)τm+1

(
u⊗ e(i)⊗ e(j)

)
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for u ∈ M , which is a consequence of

(τ2τ1) · · · (τaτa−1)τa(τa+1τa) · · · (τm+1τm)
(
u⊗ e(i)⊗ e(j)

)
= (τ2τ1) · · · (τa+1τa)τa+1(τa+2τa+1) · · · (τm+1τm)

(
u⊗ e(i)⊗ e(j)

)
for 1 ≤ a ≤ m. Note that

τa(τa+1τa) · · · (τm+1τm)
(
u⊗ e(i)⊗ e(j)

)
= τa(τa+1τa)ea+1(i)ea+2(j)(τa+2τa+1) · · · (τm+1τm)

(
u⊗ e(i)⊗ e(j)

)
and

τa(τa+1τa)ea+1(i)ea+2(j)

= (τa+1τa)τa+1ea+1(i)ea+2(j)−Qji(xa, xa+1, xa+2)ea(j)ea+1(i)ea+2(j).

Hence it is enough to show

(τ2τ1) · · · (τaτa−1)Qj,i(xa, xa+1, xa+2)ea(j)

(τa+2τa+1) · · · (τm+1τm)
(
u⊗ e(i)⊗ e(j)

)
= 0.

This follows from

(τ2τ1) · · · (τaτa−1)f(xa)g(xa+1, xa+2)ea(j)(τa+2τa+1) · · · (τm+1τm)
(
u⊗ e(i)⊗ e(j)

)
= (τ2 · · · τa)(τ1 · · · τa−1)f(xa)g(xa+1, xa+2)ea(j)

(τa+2τa+1) · · · (τm+1τm)
(
u⊗ e(i)⊗ e(j)

)
= (τ2 · · · τa)g(xa+1, xa+2)(τa+2τa+1) · · · (τm+1τm)

e1(j)(τ1 · · · τa−1)f(xa)
(
u⊗ e(i)⊗ e(j)

)
= 0

for 1 ≤ a ≤ m and f(xa) ∈ k[xa], g(xa+1, xa+2) ∈ k[xa+1, xa+2]. �

Let P (in) be a projective cover of L(in). Define the functor

E
(n)
i : R(β)-Mod → R(β − nαi)-Mod

by

E
(n)
i (M) := P (in)ψ ⊗

R(nαi)
En

i M,

where P (in)ψ denotes the right R(nαi)-module obtained from the left R(β)-module

P (in) via the anti-automorphism ψ. We define the functor E
∗ (n)
i in a similar way.

Note that

En
i � [n]i!E

(n)
i .

Corollary 10.1.4. Let R be a symmetric KLR algebra. Let i ∈ I and M a simple
module. Then we have

Λ̃
(
L(i),M

)
= εi(M),

Λ
(
L(i),M

)
= 2εi(M) + 〈hi,wt(M)〉 = εi(M) + ϕi(M).

Proof. Set n = εi(M) and M0 = E
(n)
i (M). Then the preceding proposition implies

Λ(L(i),M0) =
(
αi,wt(M0)

)
. Hence we have Λ̃(L(i),M0) = 0, which implies

Λ̃(L(i),M) = Λ̃(L(i), L(in) ◦M0) = Λ̃
(
L(i), L(in)

)
+ Λ̃(L(i),M0) = n. �
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Proposition 10.1.5. Let M , N be modules and m,n ∈ Z≥0.

(i) If Em+1
i M = 0 and En+1

i N = 0, then we have

E
(m+n)
i (M ◦N) � qmn+n〈hi,wt(M)〉E

(m)
i M ◦ E

(n)
i N.

(ii) If E∗m+1
i M = 0 and E∗n+1

i N = 0, then we have

E
∗ (m+n)
i (M ◦N) � qmn+m〈hi,wt(N)〉E

∗ (m)
i M ◦ E

∗ (n)
i N.

Proof. Our assertions follow from the shuffle lemma [21, Lemma 2.20]. �

The following corollaries are immediate consequences of Proposition 10.1.5.

Corollary 10.1.6. Let i ∈ I, and let M be a real simple module. Then Ẽmax
i M is

also real simple.

Corollary 10.1.7. Let i ∈ I, and let M be a simple module with εi(M) = m.

Then we have Ẽm
i M � E

(m)
i M .

Proposition 10.1.8. Let M and N be simple modules. We assume that one of
them is real. If εi(M ∇N) = εi(M), then we have an isomorphism in R-gmod

Ẽmax
i (M ∇N) � (Ẽmax

i M)∇N.

Similarly, if ε∗i (N ∇M) = ε∗i (M), then we have

Ẽ∗max
i (N ∇M) � (N ∇ Ẽ∗max

i M).

Proof. Set n = εi(M ∇ N) = εi(M) and M0 = Ẽmax
i M . Then M0 or N is real.

Now we have

L(in)⊗M0 ⊗N � En
i (M ∇N) � L(in)⊗ Ẽmax

i (M ∇N),

which induces a non-zero mapM0⊗N → Ẽmax
i (M∇N). Hence we have a surjective

map

M0 ◦N � Ẽmax
i (M ∇N).

Since M0 or N is real by Corollary 10.1.6, M0 ◦N has a simple head and we obtain
the desired result. A similar proof works for the second statement. �

10.2. Determinantial modules and T -system. We will use the materials in
Section 9 to obtain properties on the determinantial modules.

In the rest of this paper, we assume that R is symmetric and the base field k is
of characteristic 0. Under this condition, the family of self-dual simple R-modules
corresponds to the upper global basis of Aq(n) by Theorem 2.1.4.

Let ch be the map from K(R-gmod) to Aq(n) obtained by composing ι and the
isomorphism (2.2) in Theorem 2.1.2.

Definition 10.2.1. For λ ∈ P+ and μ, ζ ∈ Wλ such that μ � ζ, let M(μ, ζ) be a
simple R(ζ − μ)-module such that ch(M(μ, ζ)) = D(μ, ζ).

Since D(μ, ζ) is a member of the upper global basis, such a module exists uniquely
due to Theorem 2.1.4. The module M(μ, ζ) is self-dual, and we call it the determi-
nantial module.

Lemma 10.2.2. M(μ, ζ) is a real simple module.
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Proof. It follows from ch(M(μ, ζ) ◦M(μ, ζ)) = ch
(
M(μ, ζ)

)2
= q−(ζ,ζ−μ)D(2μ, 2ζ)

which is a member of the upper global basis up to a power of q. Here the last
equality follows from Corollary 9.1.3. �
Proposition 10.2.3. Let λ, μ ∈ P+, and s, s′, t, t′ ∈ W such that �(s′s) = �(s′) +
�(s), �(t′t) = �(t′) + �(t), s′sλ � t′λ, and s′μ � t′tμ. Then

(i) M(s′sλ, t′λ) and M(s′μ, t′tμ) commute,
(ii) Λ

(
M(s′sλ, t′λ),M(s′μ, t′tμ)

)
= (s′sλ+ t′λ, t′tμ− s′μ),

(iii) Λ̃
(
M(s′sλ, t′λ),M(s′μ, t′tμ)

)
= (t′λ, t′tμ− s′μ),

Λ̃
(
M(s′μ, t′tμ),M(s′sλ, t′λ)

)
= (s′μ− t′tμ, s′sλ).

Proof. It is a consequence of Proposition 9.1.6 (ii) and Corollary 4.1.4. �
Proposition 10.2.4. Let λ ∈ P+, μ, ζ ∈ Wλ such that μ � ζ and i ∈ I.

(i) If n := 〈hi, μ〉 ≥ 0, then

εi(M(μ, ζ)) = 0 and M(siμ, ζ) � F̃n
i M(μ, ζ) � L(in)∇M(μ, ζ) in R-gmod.

(ii) If 〈hi, μ〉 ≤ 0 and siμ � ζ, then εi(M(μ, ζ)) = −〈hi, μ〉.
(iii) If m :=−〈hi, ζ〉 ≥ 0, then

ε∗i (M(μ, ζ)) = 0 and M(μ, siζ) � F̃ ∗m
i M(μ, ζ) � M(μ, ζ)∇ L(im) in R-gmod.

(iv) If 〈hi, ζ〉 ≥ 0 and μ � siζ, then ε∗i (M(μ, ζ)) = 〈hi, ζ〉.

Proof. It is a consequence of Lemma 9.1.5. �
Proposition 10.2.5. Assume that u, v ∈ W and i ∈ I satisfy u < usi and v <
vsi ≤ u.

(i) We have exact sequences

(10.6)
0 −→ M(uλ, vλ) −→ q(vsi�i,v�i−u�i)M(usi�i, vsi�i) ◦M(u�i, v�i)

−→ q−1+(v�i,vsi�i−u�i)M(usi�i, v�i) ◦M(u�i, vsi�i) −→ 0,

and
(10.7)

0 −→ q1+(v�i,vsi�i−u�i)M(usi�i, v�i) ◦M(u�i, vsi�i)

−→ q(v�i,vsi�i−usi�i)M(u�i, v�i) ◦M(usi�i, vsi�i) −→ M(uλ, vλ) −→ 0,

where λ = si�i +�i.
(ii) d

(
M(u�i, v�i),M(usi�i, vsi�i)

)
= 1.

Proof. Since the proof of (10.6) is similar, let us only prove (10.7). (Indeed, they
are dual to each other.)

Set

X = q(v�i,vsi�i−u�i)M(usi�i, v�i) ◦M(u�i, vsi�i),

Y = q(v�i,vsi�i−usi�i)M(u�i, v�i) ◦M(usi�i, vsi�i),

Z = M(uλ, vλ).

Then Proposition 9.2.1 implies that

ch(Y ) = ch(qX) + ch(Z).

Since X and Z are simple and self-dual, our assertion follows from Lemma 3.2.19.
�
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10.3. Generalized T -system on determinantial module.

Theorem 10.3.1. Let λ ∈ P+ and μ1, μ2, μ3 ∈ Wλ such that μ1 � μ2 � μ3. Then
there exists a canonical epimorphism

M(μ1, μ2) ◦M(μ2, μ3) � M(μ1, μ3),

which is equivalent to saying that M(μ1, μ2)∇M(μ2, μ3) � M(μ1, μ3).
In particular, we have

Λ̃(M(μ1, μ2),M(μ2, μ3)) = 0 and Λ(M(μ1, μ2),M(μ2, μ3)) = −(μ1−μ2, μ2−μ3).

Proof. (a) Our assertion follows from Theorem 9.3.3 and Theorem 4.2.1 when μ3 =
λ.

(b) We shall prove the general case by induction on |λ − μ3|. By (a), we may
assume that μ3 	= λ. Then there exists i such that 〈hi, μ3〉 < 0. The induction
hypothesis yields that

M(μ1, μ2)∇M(μ2, siμ3) � M(μ1, siμ3).

Since μ1 � μ2 � μ3 � siμ3, Proposition 10.2.4 (iv) gives

ε∗i
(
M(μ2, siμ3)

)
= ε∗i

(
M(μ1, siμ3)

)
= −〈hi, μ3〉.

Then Proposition 10.1.8 implies that

Ẽ∗
i
max

(
M(μ1, μ2)∇M(μ2, siμ3)

)
� M(μ1, μ2)∇

(
Ẽ∗

i
maxM(μ2, siμ3)

)
,

from which we obtain

M(μ1, μ3) � M(μ1, μ2)∇M(μ2, μ3).

By Lemma 3.1.4, we have Λ̃
(
M(μ1, μ2),M(μ2, μ3)

)
= 0. Hence we obtain

Λ
(
M(μ1, μ2),M(μ2, μ3)

)
= −

(
wt(M(μ1, μ2),wt(M(μ2, μ3))

)
. �

Proposition 10.3.2. Let i ∈ I and x, y, z ∈ W .

(i) If �(xy) = �(x) + �(y), zsi > z, xy ≥ zsi, and x ≥ z, then we have

d(M(xy�i, zsi�i),M(x�i, z�i)) ≤ 1.

(ii) If �(zy) = �(z) + �(y), xsi > x, xsi ≥ zy, and x ≥ z, then we have

d(M(xsi�i, zy�i),M(x�i, z�i)) ≤ 1.

Proof. In the course of proof, we omit ι−1
�i,�i

for the sake of simplicity. If y�i = �i,
then the assertion follows from Proposition 10.2.3 (i). Hence we may assume that
y′ := ysi < y.

Let us show (i). By Proposition 9.4.1, we have

(10.8)
Δ(y�i, si�i)Δ(�i, �i) = q−1Gup ((uy�i

⊗ u�i
)⊗ (usi�i

⊗ u�i
)r)

+Gup(ι−1
λ (ẽ∗i b)⊗ ur

λ),

where λ = �i + si�i and b = ι�i
(uy�i

) ∈ B(∞). Let S∗
z,λ be the operator on

Aq(g) given by the application of e
(a1)
j1

· · · e(at)
jt

from the right, where z = sjt · · · sj1
is a reduced expression of z and ak = 〈hjk , sjk−1

· · · sj1λ〉. Then applying S∗
z,λ to

(10.8), we obtain

Δ(y�i, zsi�i)Δ(�i, z�i) = q−1Gup ((uy�i
⊗ u�i

)⊗ (uzsi�i
⊗ uz�i

)r)

+Gup(ι−1
λ (ẽ∗i b)⊗ ur

zλ).
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Recall that μ ∈ P is called x-dominant if ck ≥ 0. Here x = sir · · · si1 is a reduced
expression of x and ck := 〈hik , sik−1

· · · si1μ〉 (1 ≤ k ≤ r). Recall that an element
v ∈ Aq(g) with wtl(v) = μ is called x-highest if μ is x-dominant and

f1+ck
ik

f
(ck−1)
ik−1

· · · f (c1)
i1

v = 0 for any k (1 ≤ k ≤ r).

If v is x-highest, then v is a linear combination of x-highest Gup(b)’s. Moreover,

Sx,μG
up(b) := f

(cr)
ir

· · · f (c1)
i1

Gup(b) is either a member of the upper global basis or
zero. Since Δ(y�i, zsi�i)Δ(�i, z�i) is x-highest of weight μ:=y�i+�i, we obtain

Δ(xy�i, zsi�i)Δ(x�i, z�i) = q−1Gup ((uxy�i
⊗ ux�i

)⊗ (uzsi�i
⊗ uz�i

)r)

+ Sx,μG
up(ι−1

λ (ẽ∗i b)⊗ ur
zλ).

Applying pn, we obtain

qcD(xy�i, zsi�i)D(x�i, z�i) = q−1pnG
up ((uxy�i

⊗ ux�i
)⊗ (uzsi�i

⊗ uz�i
)r)

+ pnSx,μG
up(ι−1

λ (ẽ∗i b)⊗ ur
zλ)

for some integer c. Hence we obtain (i) by Lemma 3.2.19 (i).
(ii) is proved similarly. By applying ϕ∗ to (10.8), we obtain

q(si�ii,�ii)−(y�ii,�ii)Δ(si�i, y�i)Δ(�i, �i)

= q−1Gup ((usi�i
⊗ u�i

)⊗ (uy�i
⊗ u�i

)r)

+Gup(uλ ⊗ (ι−1
λ ẽ∗i b)

r).

Here we used Proposition 8.1.4. Then the similar arguments as above show (ii). �

Proposition 10.3.3. Let x ∈ W such that xsi > x and x�i 	= �i. Then we have

d(M(xsi�i, x�i),M(x�i, �i)) = 1.

Proof. By Proposition 10.3.2 (ii), we have d(M(xsi�i, x�i),M(x�i, �i)) ≤ 1. As-
suming d(M(xsi�i, x�i),M(x�i, �i)) = 0, let us derive a contradiction.

By Theorem 10.3.1 and the assumption, we have

M(xsi�i, x�i) ◦M(x�i, �i) � M(xsi�i, �i).

Hence we have

ε∗j (M(xsi�i, �i)) = ε∗j (M(xsi�i, x�i)) + ε∗j (M(x�i, �i))

for any j ∈ I. Since xsi�i � x�i � si�i, Proposition 10.2.4 implies that

ε∗j (M(xsi�i, �i)) = ε∗j (M(x�i, �i)) = 〈hj , �i〉.

It implies that

ε∗j (M(xsi�i, x�i)) = 0 for any j ∈ I.

It is a contradiction since wt
(
M(xsi�i, x�i)

)
= xsi�i − x�i does not vanish. �
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11. Monoidal categorification of Aq(n(w))

11.1. Quantum cluster algebra structure on Aq(n(w)). In this subsection, we
shall consider the Kac–Moody algebra g associated with a symmetric Cartan matrix
A = (ai,j)i,j∈I . We shall recall briefly the definition of the subalgebra Aq(n(w)) of
Aq(g) and its quantum cluster algebra structure by using the results of [11] and
[23]. Remark that we bring the results in [11] through the isomorphism (8.3).

For a given w ∈ W , fix a reduced expression w̃ = sir · · · si1 .
For s ∈ {1, . . . , r} and j ∈ I, we set

s+ := min({k | s < k ≤ r, ik = is} ∪ {r + 1}),
s− := max({k | 1 ≤ k < s, ik = is} ∪ {0}),

s−(j) := max({k | 1 ≤ k < s, ik = j} ∪ {0}).

We set

uk := si1 · · · sik for 0 ≤ k ≤ r,(11.1)

and

λk := uk�ik for 1 ≤ k ≤ r.

Note that λk− = uk−1�ik , if k− > 0. For 0 ≤ t ≤ s ≤ r, we set

D(s, t) =

⎧⎪⎨⎪⎩
D(λs, λt) if 0 < t,

D(λs, �is) if 0 = t < s ≤ r,

1 if t = s = 0.

The Q(q)-subalgebra of Aq(n) generated by D(i, i−) (1 ≤ i ≤ r) is independent
of the choice of a reduced expression of w. We denote it by Aq(n(w)). Then every
D(s, t) (0 ≤ t ≤ s ≤ r) is contained in Aq(n(w)) [11, Corollary 12.4]. The set
Bup

(
Aq(n(w))

)
:=Bup

(
Aq(g)

)
∩ Aq(n(w)) is a basis of Aq(n(w)) as a Q(q)-vector

space [23, Theorem 4.2.5]. We call it the upper global basis of Aq(n(w)). We
denote by Aq(n(w))Z[q±1] the Z[q±1]-module generated by Bup

(
Aq(n(w)). Then

it is a Z[q±1]-subalgebra of Aq(n(w)) [23, Section 4.7.2]. We set Aq1/2(n(w)) :=

Q(q1/2)⊗Q(q) Aq(n(w)).
Let J = {1, . . . , r}, Jfr := {k ∈ J | k+ = r + 1}, and Jex := J \ Jfr.

Definition 11.1.1. We define the quiver Q with the set of vertices Q0 and the set
of arrows Q1 as follows:

(Q0) Q0 = J = {1, . . . , r},
(Q1) There are two types of arrows:

ordinary arrows : s
|ais,it |−−−−−−→ t if 1 ≤ s < t < s+ < t+ ≤ r + 1,

horizontal arrows : s −→ s− if 1 ≤ s− < s ≤ r.

Let B̃ = (bi,j) be the integer-valued J × Jex-matrix associated to the quiver Q by
(5.2).

Lemma 11.1.2. Assume that 0 ≤ d ≤ b ≤ a ≤ c ≤ r and

• ib = ia when b 	= 0,
• id = ic when d 	= 0.
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Then D(a, b) and D(c, d) q-commute; that is, there exists λ ∈ Z such that

D(a, b)D(c, d) = qλD(c, d)D(a, b).

Proof. We may assume a > 0. Let uk be as in (11.1). Take s′ = ua, s = u−1
a uc,

t′ = ud, and t = u−1
d ub. Then we have

D(s′�ia , t
′t�ia) = D(a, b) and D(s′s�ic , t

′�ic) = D(c, d).

From Proposition 9.1.6, our assertion follows. �

Hence we have an integer-valued skew-symmetric matrix L = (λi,j)1≤i,j≤r such
that

D(i, 0)D(j, 0) = qλi,jD(j, 0)D(i, 0).

Proposition 11.1.3 ([11, Proposition 10.1]). The pair (L, B̃) is compatible with
d = 2 in (5.3).

Theorem 11.1.4 ([11, Theorem 12.3]). Let Aq1/2([S ]) be the quantum cluster al-

gebra associated to the initial quantum seed [S ]:=({q−(ds,ds)/4D(s, 0)}1≤s≤r, L, B̃).

Then we have an isomorphism of Q(q1/2)-algebras

Q(q1/2)⊗Z[q±1/2] Aq1/2([S ]) � Aq1/2(n(w)),

where ds := λs −�is = wt(D(s, 0)) and Aq1/2(n(w)) :=Q(q1/2)⊗Q(q) Aq(n(w)).

11.2. Admissible seeds in the monoidal category Cw. For 0 ≤ t ≤ s ≤ r, we
set M(s, t) = M(λs, λt). It is a real simple module with ch(M(s, t)) = D(s, t).

Definition 11.2.1. For w ∈ W , let Cw be the smallest monoidal abelian full sub-
category of R-gmod satisfying the following properties:

(i) Cw is stable under the subquotients, extensions, and grading shifts,
(ii) Cw contains M(s, s−) for all 1 ≤ s ≤ �(w).

Then by [11], M ∈ R-gmod belongs to Cw if and only if ch(M) belongs to
Aq(n(w)). Hence we have a Z[q±1]-algebra isomorphism

K(Cw) � Aq(n(w))Z[q±1].

We set

Λ := (Λ(M(i, 0),M(j, 0)))1≤i,j≤r and D = (di)1≤i≤r := (wt(M(i, 0)))1≤i≤r.

Then, by Proposition 10.2.3, S := ({M(k, 0)}1≤k≤r,−Λ, B̃,D) is a quantum
monoidal seed in Cw. We are now ready to state the main theorem in this section.

Theorem 11.2.2. The pair
(
{M(k, 0)}1≤k≤r, B̃

)
is admissible.

As we already explained, combined with Theorem 7.1.3 and Corollary 7.1.4, this
theorem implies the following theorem.

Theorem 11.2.3. The category Cw is a monoidal categorification of the quantum
cluster algebra Aq1/2(n(w)).

In the course of proving Theorem 11.2.2, we omit grading shifts if there is no
danger of confusion.
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We shall start the proof of Theorem 11.2.2 by proving that, for each s ∈ Jex,
there exists a simple module X such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(a) there exists a surjective homomorphism (up to a grading shift)

X ◦M(s, 0) � ◦t; bt,s>0M(t, 0)◦bt,s ,

(b) there exists a surjective homomorphism (up to a grading shift)

M(s, 0) ◦X � ◦t; bt,s<0M(t, 0)◦−bt,s ,

(c) d(X,M(s, 0)) = 1.

(11.2)

We set

x := is ∈ I,

Is := {ik | s < k < s+} ⊂ I \ {x},
A := ◦

t<s<t+<s+
M(t, 0)◦|ais,it | = ◦

y∈Is
M(s−(y), 0)◦|ax,y|.

Then A is a real simple module.
Now we claim that the following simple module X satisfies the conditions in

(11.2):
X :=M(s+, s)∇A.

Let us show (11.2) (a). The incoming arrows to s are

• t
|ax,it |−−−−→ s for 1 ≤ t < s < t+ < s+,

• s+ −−→ s.

Hence we have
◦t; bt,s>0M(t, 0)◦bt,s � A ◦M(s+, 0).

Then the morphism in (a) is obtained as the composition,

X ◦M(s, 0) � A ◦M(s+, s) ◦M(s, 0) � A ◦M(s+, 0).(11.3)

Here the second epimorphism is given in Theorem 10.3.1, and Lemma 3.1.5 asserts
that the composition (11.3) is non-zero and hence an epimorphism.

Let us show (11.2) (b). The outgoing arrows from s are

• s
|ax,it |−−−−−→ t for s < t < s+ < t+ ≤ r + 1.

• s −→ s− if s− > 0.

Hence we have

◦
t;bt,s<0

M(t, 0)◦−bt,s � M(s−, 0) ◦
(

◦
y∈Is

M((s+)
−(y), 0)◦−ax,y

)
.(11.4)

Lemma 11.2.4. There exists an epimorphism (up to a grading)

Ω : M(s, 0) ◦M(s+, s) ◦A � ◦t;bt,s<0M(t, 0)◦−bt,s .

Proof. By the dual of Theorem 10.3.1 and the T -system (10.7) with i = is, u =
us+−1, and v = us−1, we have morphisms

M(s, 0) � M(s−, 0) ◦M(s, s−),

M(s, s−) ◦M(s+, s) � ◦y∈I\{x}M((s+)
−(y), s−(y))◦−ax,y

� ◦y∈IsM((s+)
−(y), s−(y))◦−ax,y .

Here the last isomorphism follows from the fact that (s+)
−(y) = s−(y) for any

y 	∈ {x} ∪ Is = {ik | s ≤ k < s+}.
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Thus we have a sequence of morphisms

M(s, 0) ◦M(s+, s) ◦A �� ϕ1 �� M(s−, 0) ◦M(s, s−) ◦M(s+, s) ◦A

ϕ2 �� �� M(s−, 0) ◦
(
◦y∈IsM((s+)

−(y), s−(y))◦−ax,y
)
◦A.

By Lemma 3.1.5 (i), the composition ϕ := ϕ2 ◦ ϕ1 is non-zero.
Since A = ◦y∈IsM(s−(y), 0)◦−ax,y , Theorem 10.3.1 gives the morphisms

M(s, 0) ◦M(s+, s) ◦A
ϕ �� M(s−, 0) ◦

(
◦y∈IsM((s+)

−(y), s−(y))◦−ax,y
)
◦A

φ �� �� M(s−, 0) ◦
(
◦y∈IsM((s+)

−(y), 0)◦−ax,y
)

� ◦t;bt,s<0M(t, 0)◦−bt,s .

Here we have used Lemma 3.2.22 to obtain the morphism φ. Note that the module
◦y∈IsM((s+)

−(y), s−(y))◦−ax,y is simple. By applying Lemma 3.1.5 once again,
φ ◦ ϕ is non-zero, and hence it is an epimorphism. �
Lemma 11.2.5. We have d(X,M(s, 0)) = 1.

Proof. Since A and M(s, 0) commute and d
(
M(s+, s),M(s, 0)

)
= 1 by Proposi-

tion 10.3.3, we have

d
(
X,M(s, 0)

)
≤ d

(
M(s+, s),M(s, 0)

)
+ d

(
A,M(s, 0)

)
≤ 1

by Proposition 3.2.10 and Lemma 3.2.3. If X and M(s, 0) commute, then (11.2)
(a) would imply that ch

(
◦t; bt,s>0M(t, 0)◦bt,s

)
belongs to K(R-gmod) ch(M(s, 0)).

It contradicts the result in [10] that all the ch(M(k, 0))’s are prime at q = 1. �
Proposition 11.2.6. The map Ω factors through M(s, 0) ◦X; that is,

M(s, 0) ◦M(s+, s) ◦A

τ

�� �����
����

����
����

��
Ω �� �� ◦t;bt,s<0M(t, 0)◦−bt,s .

M(s, 0) ◦X

Ω
�� ������������������

Here τ is the canonical surjection.

Proof. We have 1 = d
(
M(s, 0),M(s+, s)∇A

)
by Lemma 11.2.5, and

d
(
M(s, 0),M(s+, s)

)
+ d

(
M(s, 0), A

)
= 1

by Proposition 10.3.3 with x = us+−1, i = is. Hence M(s, 0) ◦M(s+, s) ◦ A has a
simple head by Proposition 3.2.16 (iii). �
End of the proof of Theorem 11.2.2. By the above arguments, we have proved the
existence of X which satisfies (11.2). By Proposition 3.2.17 and (11.2) (c), M(s, 0)◦
X has composition length 2. Moreover, it has a simple socle and simple head. On
the other hand, taking the dual of (11.2) (a), we obtain a monomorphism⊙

t;bt,s>0

M(t, 0)�bt,s � M(s, 0) ◦X

in R-mod. Together with (11.2) (b), there exists a short exact sequence in R-gmod:

0 → qc
⊙

t;bt,s>0

M(t, 0)�bt,s → qΛ̃(M(s,0),X)M(s, 0) ◦X →
⊙

t;bt,s<0

M(t, 0)�(−bt,s) → 0

for some c ∈ Z. By Lemma 3.2.18 c must be equal to 1.
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It remains to prove that X commutes with M(k, 0) (k 	= s). For any k ∈ J , we
have

Λ(M(k, 0), X) = Λ(M(k, 0),M(s, 0)∇X)− Λ(M(k, 0),M(s, 0))

=
∑

t; bt,s<0

Λ(M(k, 0),M(t, 0))(−bt,s)− Λ(M(k, 0),M(s, 0))

and

Λ(X,M(k, 0)) = Λ(X ∇M(s, 0),M(k, 0))− Λ(M(s, 0),M(k, 0))

=
∑

t; bt,s>0

Λ(M(t, 0),M(k, 0))bt,s − Λ(M(s, 0),M(k, 0)).

Hence we have

2 d(M(k, 0), X) = −2 d(M(k, 0),M(s, 0))−
∑

t; bt,s<0

Λ(M(k, 0),M(t, 0))bt,s

−
∑

t; bt,s>0

Λ(M(k, 0),M(t, 0))bt,s

= −
∑

1≤t≤r

Λ(M(k, 0),M(t, 0))bt,s

= 2δk,s.

We conclude that X commutes with M(k, 0) if k 	= s. Thus we complete the proof
of Theorem 11.2.2. �

As a corollary, we prove the following conjecture on the cluster monomials.

Theorem 11.2.7 ([11, Conjecture 12.9], [23, Conjecture 1.1(2)]). Every cluster
variable in Aq(n(w)) is a member of the upper global basis up to a power of q1/2.

Theorem 11.2.2 also implies [11, Conjecture 12.7] in the refined form as follows.

Corollary 11.2.8. Z[q±1/2]⊗Z[q±1] Aq(n(w))Z[q±1] has a quantum cluster algebra
structure associated with the initial quantum seed

[S ] = ({q−(di,di)/4D(i, 0)}1≤i≤r, L, B̃);

i.e.,

Z[q±1/2] ⊗
Z[q±1]

Aq(n(w))Z[q±1] � Aq1/2([S ]).
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[11] C. Geiß, B. Leclerc, and J. Schröer, Cluster structures on quantum coordinate rings, Selecta

Math. (N.S.) 19 (2013), no. 2, 337–397. MR3090232
[12] David Hernandez and Bernard Leclerc, Cluster algebras and quantum affine algebras, Duke

Math. J. 154 (2010), no. 2, 265–341. MR2682185
[13] David Hernandez and Bernard Leclerc, Monoidal categorifications of cluster algebras of type

A and D, Symmetries, integrable systems and representations, Springer Proc. Math. Stat.,
vol. 40, Springer, Heidelberg, 2013, pp. 175–193. MR3077685

[14] Seok-Jin Kang, Masaki Kashiwara, Myungho Kim, and Se-Jin Oh, Symmetric quiver Hecke
algebras and R-matrices of quantum affine algebras IV, Selecta Math. (N.S.) 22 (2016), no. 4,
1987–2015. MR3573951

[15] Seok-Jin Kang, Masaki Kashiwara, Myungho Kim, and Se-jin Oh, Simplicity of heads and
socles of tensor products, Compos. Math. 151 (2015), no. 2, 377–396. MR3314831

[16] M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke
Math. J. 63 (1991), no. 2, 465–516. MR1115118

[17] Masaki Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2,
455–485. MR1203234

[18] Masaki Kashiwara, The crystal base and Littelmann’s refined Demazure character formula,
Duke Math. J. 71 (1993), no. 3, 839–858. MR1240605

[19] Masaki Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73
(1994), no. 2, 383–413. MR1262212

[20] Masaki Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994), CMS Conf.

Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155–197. MR1357199
[21] Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of

quantum groups. I, Represent. Theory 13 (2009), 309–347. MR2525917
[22] Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of

quantum groups II, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2685–2700. MR2763732
[23] Yoshiyuki Kimura, Quantum unipotent subgroup and dual canonical basis, Kyoto J. Math.

52 (2012), no. 2, 277–331. MR2914878
[24] Yoshiyuki Kimura and Fan Qin, Graded quiver varieties, quantum cluster algebras and dual

canonical basis, Adv. Math. 262 (2014), 261–312. MR3228430

http://www.ams.org/mathscinet-getitem?mr=751966
http://www.ams.org/mathscinet-getitem?mr=1237826
http://www.ams.org/mathscinet-getitem?mr=2146350
http://www.ams.org/mathscinet-getitem?mr=3123308
http://www.ams.org/mathscinet-getitem?mr=3414389
http://www.ams.org/mathscinet-getitem?mr=1887642
http://www.ams.org/mathscinet-getitem?mr=2144987
http://www.ams.org/mathscinet-getitem?mr=2822235
http://www.ams.org/mathscinet-getitem?mr=3064982
http://www.ams.org/mathscinet-getitem?mr=3090232
http://www.ams.org/mathscinet-getitem?mr=2682185
http://www.ams.org/mathscinet-getitem?mr=3077685
http://www.ams.org/mathscinet-getitem?mr=3573951
http://www.ams.org/mathscinet-getitem?mr=3314831
http://www.ams.org/mathscinet-getitem?mr=1115118
http://www.ams.org/mathscinet-getitem?mr=1203234
http://www.ams.org/mathscinet-getitem?mr=1240605
http://www.ams.org/mathscinet-getitem?mr=1262212
http://www.ams.org/mathscinet-getitem?mr=1357199
http://www.ams.org/mathscinet-getitem?mr=2525917
http://www.ams.org/mathscinet-getitem?mr=2763732
http://www.ams.org/mathscinet-getitem?mr=2914878
http://www.ams.org/mathscinet-getitem?mr=3228430


426 S.-J. KANG, M. KASHIWARA, M. KIM, AND S.-J. OH

[25] Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki, T -systems and Y -systems in integrable
systems, J. Phys. A 44 (2011), no. 10, 103001, 146. MR2773889

[26] Philipp Lampe, A quantum cluster algebra of Kronecker type and the dual canonical basis,
Int. Math. Res. Not. IMRN 13 (2011), 2970–3005. MR2817684

[27] P. Lampe, Quantum cluster algebras of type A and the dual canonical basis, Proc. Lond.
Math. Soc. (3) 108 (2014), no. 1, 1–43. MR3162819

[28] Aaron D. Lauda and Monica Vazirani, Crystals from categorified quantum groups, Adv. Math.

228 (2011), no. 2, 803–861. MR2822211
[29] B. Leclerc, Imaginary vectors in the dual canonical basis of Uq(n), Transform. Groups 8

(2003), no. 1, 95–104. MR1959765
[30] Kyungyong Lee and Ralf Schiffler, Positivity for cluster algebras, Ann. of Math. (2) 182

(2015), no. 1, 73–125. MR3374957
[31] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc.

3 (1990), no. 2, 447–498. MR1035415
[32] G. Lusztig, Canonical bases in tensor products, Proc. Natl. Acad. Sci. USA 89 (1992), no. 17,

8177–8179. MR1180036
[33] George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110,
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