Simple groups of Morley rank $3$ are algebraic
HTML articles powered by AMS MathViewer
- by Olivier Frécon;
- J. Amer. Math. Soc. 31 (2018), 643-659
- DOI: https://doi.org/10.1090/jams/892
- Published electronically: November 7, 2017
- HTML | PDF | Request permission
Abstract:
There exists no bad group (in the sense of Gregory Cherlin); namely, any simple group of Morley rank 3 is isomorphic to $\textrm {PSL}_2(K)$ for an algebraically closed field $K$.References
- Tuna Altınel, Alexandre V. Borovik, and Gregory Cherlin, Simple groups of finite Morley rank, Mathematical Surveys and Monographs, vol. 145, American Mathematical Society, Providence, RI, 2008. MR 2400564 (2009a:20046), DOI 10.1090/surv/145
- John T. Baldwin, An almost strongly minimal non-Desarguesian projective plane, Trans. Amer. Math. Soc. 342 (1994), no. 2, 695–711. MR 1165085, DOI 10.1090/S0002-9947-1994-1165085-8
- Franck Benoist, Elisabeth Bouscaren, and Anand Pillay, On function field Mordell-Lang and Manin-Mumford, J. Math. Log. 16 (2016), no. 1, 1650001, 24. MR 3518778, DOI 10.1142/S021906131650001X
- A. V. Borovik and B. P. Poizat, Simple groups of finite Morley rank without nonnilpotent connected subgroups, 1990. Preprint deposited at VINITI.
- Alexandre Borovik and Ali Nesin, Groups of finite Morley rank, Oxford Logic Guides, vol. 26, The Clarendon Press Oxford University Press, New York, 1994. Oxford Science Publications. MR 1321141 (96c:20004)
- Gregory Cherlin, Groups of small Morley rank, Ann. Math. Logic 17 (1979), no. 1-2, 1–28. MR 552414, DOI 10.1016/0003-4843(79)90019-6
- Luis Jaime Corredor, Bad groups of finite Morley rank, J. Symbolic Logic 54 (1989), no. 3, 768–773. MR 1011167, DOI 10.2307/2274740
- Robin Hartshorne, Foundations of projective geometry, W. A. Benjamin, Inc., New York, 1967. Lecture Notes, Harvard University, 1966/67. MR 222751
- Ehud Hrushovski, The Mordell-Lang conjecture for function fields, J. Amer. Math. Soc. 9 (1996), no. 3, 667–690. MR 1333294, DOI 10.1090/S0894-0347-96-00202-0
- Eric Jaligot, Full Frobenius groups of finite Morley rank and the Feit-Thompson theorem, Bull. Symbolic Logic 7 (2001), no. 3, 315–328. MR 1860607, DOI 10.2307/2687751
- Eric Jaligot and Abderezak Ould Houcine, Existentially closed CSA-groups, J. Algebra 280 (2004), no. 2, 772–796. MR 2090064, DOI 10.1016/j.jalgebra.2004.06.007
- Yerulan Mustafin and Bruno Poizat, Sous-groupes superstables de $\textrm {SL}_2(K)$ et de $\textrm {PSL}_2(K)$, J. Algebra 297 (2006), no. 1, 155–167 (French). MR 2206852, DOI 10.1016/j.jalgebra.2005.05.004
- Ali Nesin, Nonsolvable groups of Morley rank $3$, J. Algebra 124 (1989), no. 1, 199–218. MR 1005703, DOI 10.1016/0021-8693(89)90159-2
- Ali Nesin, On bad groups, bad fields, and pseudoplanes, J. Symbolic Logic 56 (1991), no. 3, 915–931. MR 1129156, DOI 10.2307/2275061
- Jonathan Pila, O-minimality and the André-Oort conjecture for $\Bbb C^n$, Ann. of Math. (2) 173 (2011), no. 3, 1779–1840. MR 2800724, DOI 10.4007/annals.2011.173.3.11
- Bruno Poizat, Groupes stables, Nur al-Mantiq wal-Maʾrifah [Light of Logic and Knowledge], vol. 2, Bruno Poizat, Lyon, 1987 (French). Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic]. MR 902156
- Bruno Poizat, Milieu et symétrie, une étude de la convexité dans les groupes sans involutions, 2017. J. Algebra, to appear. Preprint deposited at: http://www.logique.jussieu.fr/modnet/Publications/Preprint\%20server/papers/1168/1168.pdf.
- Simon Thomas, The classification of the simple periodic linear groups, Arch. Math. (Basel) 41 (1983), no. 2, 103–116. MR 719412, DOI 10.1007/BF01196865
- Frank Wagner, Bad groups, 2017. RIMS kokyuroku, Mathematical Logic and Its Applications, volume 250, to appear. Preprint deposited at: https://hal.archives-ouvertes.fr/hal-01482555.
- B. I. Zil′ber, Groups and rings whose theory is categorical, Fund. Math. 95 (1977), no. 3, 173–188 (Russian, with English summary). MR 441720
Bibliographic Information
- Olivier Frécon
- Affiliation: Laboratoire de Mathématiques et Applications, Université de Poitiers, Téléport 2 – BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil Cedex, France
- Email: olivier.frecon@math.univ-poitiers.fr
- Received by editor(s): September 25, 2016
- Received by editor(s) in revised form: August 6, 2017, and October 8, 2017
- Published electronically: November 7, 2017
- © Copyright 2017 American Mathematical Society
- Journal: J. Amer. Math. Soc. 31 (2018), 643-659
- MSC (2010): Primary 20F11; Secondary 03C45, 20A15
- DOI: https://doi.org/10.1090/jams/892
- MathSciNet review: 3787404