A proof of the shuffle conjecture
HTML articles powered by AMS MathViewer
- by Erik Carlsson and Anton Mellit
- J. Amer. Math. Soc. 31 (2018), 661-697
- DOI: https://doi.org/10.1090/jams/893
- Published electronically: November 30, 2017
- HTML | PDF | Request permission
Abstract:
We present a proof of the compositional shuffle conjecture by Haglund, Morse and Zabrocki [Canad. J. Math., 64 (2012), 822–844], which generalizes the famous shuffle conjecture for the character of the diagonal coinvariant algebra by Haglund, Haiman, Loehr, Remmel, and Ulyanov [Duke Math. J., 126 (2005), 195–232]. We first formulate the combinatorial side of the conjecture in terms of certain operators on a graded vector space $V_*$ whose degree zero part is the ring of symmetric functions $\operatorname {Sym}[X]$ over $\mathbb {Q}(q,t)$. We then extend these operators to an action of an algebra $\tilde {\mathbb A}$ acting on this space, and interpret the right generalization of the $\nabla$ using an involution of the algebra which is antilinear with respect to the conjugation $(q,t)\mapsto (q^{-1},t^{-1})$.References
- F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions, Methods Appl. Anal. 6 (1999), no. 3, 363–420. Dedicated to Richard A. Askey on the occasion of his 65th birthday, Part III. MR 1803316, DOI 10.4310/MAA.1999.v6.n3.a7
- Francois Bergeron, Adriano Garsia, Emily Sergel Leven, and Guoce Xin, Compositional $(km,kn)$-shuffle conjectures, Int. Math. Res. Not. IMRN 14 (2016), 4229–4270. MR 3556418, DOI 10.1093/imrn/rnv272
- Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535–554. MR 1824990, DOI 10.1090/S0894-0347-01-00368-X
- E. S. Egge, J. Haglund, K. Killpatrick, and D. Kremer, A Schröder generalization of Haglund’s statistic on Catalan paths, Electron. J. Combin. 10 (2003), Research Paper 16, 21. MR 1975766, DOI 10.37236/1709
- A. M. Garsia and M. Haiman, A remarkable $q,t$-Catalan sequence and $q$-Lagrange inversion, J. Algebraic Combin. 5 (1996), no. 3, 191–244. MR 1394305, DOI 10.1023/A:1022476211638
- A. M. Garsia and J. Haglund, A proof of the $q,t$-Catalan positivity conjecture, Discrete Math. 256 (2002), no. 3, 677–717. LaCIM 2000 Conference on Combinatorics, Computer Science and Applications (Montreal, QC). MR 1935784, DOI 10.1016/S0012-365X(02)00343-6
- A. M. Garsia, M. Haiman, and G. Tesler, Explicit plethystic formulas for Macdonald $q,t$-Kostka coefficients, Sém. Lothar. Combin. 42 (1999), Art. B42m, 45. The Andrews Festschrift (Maratea, 1998). MR 1701592
- Eugene Gorsky and Andrei Neguţ, Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. (9) 104 (2015), no. 3, 403–435 (English, with English and French summaries). MR 3383172, DOI 10.1016/j.matpur.2015.03.003
- Eugene Gorsky, Alexei Oblomkov, Jacob Rasmussen, and Vivek Shende, Torus knots and the rational DAHA, Duke Math. J. 163 (2014), no. 14, 2709–2794. MR 3273582, DOI 10.1215/00127094-2827126
- A. M. Garsia, G. Xin, and M. Zabrocki, Hall-Littlewood operators in the theory of parking functions and diagonal harmonics, Int. Math. Res. Not. IMRN 6 (2012), 1264–1299. MR 2899952, DOI 10.1093/imrn/rnr060
- J. Haglund, Conjectured statistics for the $q,t$-Catalan numbers, Adv. Math. 175 (2003), no. 2, 319–334. MR 1972636, DOI 10.1016/S0001-8708(02)00061-0
- J. Haglund, A proof of the $q,t$-Schröder conjecture, Internat. Math. Res. Notices 11 (2004), 525–560.
- James Haglund, The $q$,$t$-Catalan numbers and the space of diagonal harmonics, University Lecture Series, vol. 41, American Mathematical Society, Providence, RI, 2008. With an appendix on the combinatorics of Macdonald polynomials. MR 2371044, DOI 10.1007/s10711-008-9270-0
- Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941–1006. MR 1839919, DOI 10.1090/S0894-0347-01-00373-3
- Mark Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), no. 2, 371–407. MR 1918676, DOI 10.1007/s002220200219
- J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc. 18 (2005), no. 3, 735–761. MR 2138143, DOI 10.1090/S0894-0347-05-00485-6
- J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), no. 2, 195–232. MR 2115257, DOI 10.1215/S0012-7094-04-12621-1
- Angela S. Hicks, Two parking function bijections: a sharpening of the $q$, $t$-Catalan and Shröder theorems, Int. Math. Res. Not. IMRN 13 (2012), 3064–3088. MR 2946232, DOI 10.1093/imrn/rnr132
- Tatsuyuki Hikita, Affine Springer fibers of type $A$ and combinatorics of diagonal coinvariants, Adv. Math. 263 (2014), 88–122. MR 3239135, DOI 10.1016/j.aim.2014.06.011
- J. Haglund and N. Loehr, A conjectured combinatorial formula for the Hilbert series for diagonal harmonics, Discrete Math. 298 (2005), no. 1-3, 189–204. MR 2163448, DOI 10.1016/j.disc.2004.01.022
- J. Haglund, J. Morse, and M. Zabrocki, A compositional shuffle conjecture specifying touch points of the Dyck path, Canad. J. Math. 64 (2012), no. 4, 822–844. MR 2957232, DOI 10.4153/CJM-2011-078-4
- Nicholas A. Loehr and Elizabeth Niese, New combinatorial formulations of the shuffle conjecture, Adv. in Appl. Math. 55 (2014), 22–47. MR 3176715, DOI 10.1016/j.aam.2013.12.003
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Andrei Negut, The shuffle algebra revisited, Int. Math. Res. Not. IMRN 22 (2014), 6242–6275. MR 3283004, DOI 10.1093/imrn/rnt156
- O. Schiffmann and E. Vasserot, The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compos. Math. 147 (2011), no. 1, 188–234. MR 2771130, DOI 10.1112/S0010437X10004872
- Olivier Schiffmann and Eric Vasserot, The elliptic Hall algebra and the $K$-theory of the Hilbert scheme of $\Bbb A^2$, Duke Math. J. 162 (2013), no. 2, 279–366. MR 3018956, DOI 10.1215/00127094-1961849
Bibliographic Information
- Erik Carlsson
- Affiliation: International Centre for Theoretical Physics, Str. Costiera, 11, 34151 Trieste, Italy
- Address at time of publication: Department of Mathematics, University of California, Davis, 1 Shields Ave., Davis, California 95616
- MR Author ID: 793205
- Email: ecarlsson@math.ucdavis.edu
- Anton Mellit
- Affiliation: International Centre for Theoretical Physics, Str. Costiera, 11, 34151 Trieste, Italy
- Address at time of publication: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
- MR Author ID: 739689
- Email: anton.mellit@univie.ac.at
- Received by editor(s): March 29, 2016
- Received by editor(s) in revised form: August 29, 2017, and October 11, 2017
- Published electronically: November 30, 2017
- © Copyright 2017 American Mathematical Society
- Journal: J. Amer. Math. Soc. 31 (2018), 661-697
- MSC (2010): Primary 05E10; Secondary 05E05, 05A30, 33D52
- DOI: https://doi.org/10.1090/jams/893
- MathSciNet review: 3787405