Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale
HTML articles powered by AMS MathViewer
- by Vincent Lafforgue;
- J. Amer. Math. Soc. 31 (2018), 719-891
- DOI: https://doi.org/10.1090/jams/897
- Published electronically: February 23, 2018
- HTML | PDF | Request permission
Abstract:
For any reductive group $G$ over a global function field, we use the cohomology of $G$-shtukas with multiple modifications and the geometric Satake equivalence to prove the global Langlands correspondence for $G$ in the “automorphic to Galois” direction. Moreover we obtain a canonical decomposition of the spaces of cuspidal automorphic forms indexed by global Langlands parameters. The proof does not rely at all on the Arthur-Selberg trace formula.References
- Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 3, Société Mathématique de France, Paris, 2003 (French). Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61]; Directed by A. Grothendieck; With two papers by M. Raynaud; Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)]. MR 2017446
- Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR 354654
- Cohomologie $l$-adique et fonctions $L$, Lecture Notes in Mathematics, Vol. 589, Springer-Verlag, Berlin-New York, 1977 (French). Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5); Edité par Luc Illusie. MR 491704
- Esmail Arasteh Rad and Urs Hartl, Uniformizing The Moduli Stacks of Global G-Shtukas, arXiv:1302.6351., DOI 10.1093/imrn/rnz223
- James Arthur, Unipotent automorphic representations: conjectures, Astérisque 171-172 (1989), 13–71. Orbites unipotentes et représentations, II. MR 1021499
- Alexandru Ioan Badulescu and Philippe Roche, Global Jacquet-Langlands correspondence for division algebras in characteristic $p$, Int. Math. Res. Not. IMRN 7 (2017), 2172–2206. MR 3658194, DOI 10.1093/imrn/rnw094
- Michael Bate, Benjamin Martin, and Gerhard Röhrle, A geometric approach to complete reducibility, Invent. Math. 161 (2005), no. 1, 177–218. MR 2178661, DOI 10.1007/s00222-004-0425-9
- Arnaud Beauville and Yves Laszlo, Un lemme de descente, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 3, 335–340 (French, with English and French summaries). MR 1320381
- Kai Achim Behrend, The Lefschetz trace formula for the moduli stack of principal bundles, ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)–University of California, Berkeley. MR 2686745
- Kai Behrend, Moduli spaces for vector bundles with level structures on algebraic curves. Diplomarbeit, non published, 1996. Summary available, http://www.math.ubc.ca/~behrend/diplomsum.pdf.
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Alexander Beilinson and Vladimir Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, 1999, http://math.uchicago.edu/~mitya/langlands.html.
- Alexander Beilinson and Vladimir Drinfeld, Chiral algebras, American Mathematical Society Colloquium Publications, vol. 51, American Mathematical Society, Providence, RI, 2004. MR 2058353, DOI 10.1090/coll/051
- A. Beilinson, Langlands parameters for Heisenberg modules, Studies in Lie theory, Progr. Math., vol. 243, Birkhäuser Boston, Boston, MA, 2006, pp. 51–60. MR 2214245, DOI 10.1007/0-8176-4478-4_{4}
- Joël Bellaïche and Gaëtan Chenevier, Families of Galois representations and Selmer groups, Astérisque 324 (2009), xii+314 (English, with English and French summaries). MR 2656025
- Roman Bezrukavnikov and Michael Finkelberg, Equivariant Satake category and Kostant-Whittaker reduction, Mosc. Math. J. 8 (2008), no. 1, 39–72, 183 (English, with English and Russian summaries). MR 2422266, DOI 10.17323/1609-4514-2008-8-1-39-72
- Don Blasius, On multiplicities for $\textrm {SL}(n)$, Israel J. Math. 88 (1994), no. 1-3, 237–251. MR 1303497, DOI 10.1007/BF02937513
- Don Blasius and Jonathan D. Rogawski, Zeta functions of Shimura varieties, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 525–571. MR 1265563, DOI 10.1090/pspum/055.2/1265563
- Gebhard Böckle, Michael Harris, Chandrashekhar Khare, and Jack Thorne, $\widehat G$-local systems on smooth projective curves are potentially automorphic. , 2016, arXiv:1609.03491.
- A. Borel, Automorphic $L$-functions, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 27–61. MR 546608
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 189–207. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. MR 546598
- N. Bourbaki, Éléments de mathématique. Algèbre. Chapitre 8. Modules et anneaux semi-simples, Springer, Berlin, 2012 (French). Second revised edition of the 1958 edition [MR0098114]. MR 3027127, DOI 10.1007/978-3-540-35316-4
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), no. 2, 287–384. MR 1933587, DOI 10.1007/s00222-002-0237-8
- Alexander Braverman and Yakov Varshavsky, From automorphic sheaves to the cohomology of the moduli spaces of $F$-bundles, 2006. Unpublished preprint
- Kevin Buzzard and Toby Gee, The conjectural connections between automorphic representations and Galois representations, Automorphic forms and Galois representations. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 414, Cambridge Univ. Press, Cambridge, 2014, pp. 135–187. MR 3444225, DOI 10.1017/CBO9781107446335.006
- P. Cartier, Representations of $p$-adic groups: a survey, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 111–155. MR 546593
- Gaëtan Chenevier, Représentations galoisiennes automorphes et conséquences arithmétiques des conjectures de Langlands et Arthur. Habilitation à diriger des recherches,, 2013, http://gaetan.chenevier.perso.math.cnrs.fr/hdr/HDR.pdf.
- Gaëtan Chenevier, The $p$-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings, Automorphic forms and Galois representations. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 414, Cambridge Univ. Press, Cambridge, 2014, pp. 221–285. MR 3444227
- Bruce Chandler and Wilhelm Magnus, The history of combinatorial group theory, Studies in the History of Mathematics and Physical Sciences, vol. 9, Springer-Verlag, New York, 1982. A case study in the history of ideas. MR 680777, DOI 10.1007/978-1-4613-9487-7
- Predrag Cvitanović, Group theory, Princeton University Press, Princeton, NJ, 2008. Birdtracks, Lie’s, and exceptional groups. MR 2418111, DOI 10.1515/9781400837670
- J. W. Cogdell and I. I. Piatetski-Shapiro, Converse theorems for $\textrm {GL}_n$, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 157–214. MR 1307299, DOI 10.1007/BF02698889
- Pierre Deligne, Formes modulaires et représentations $l$-adiques, Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363, Lecture Notes in Math., vol. 175, Springer, Berlin, 1971, pp. Exp. No. 355, 139–172 (French). MR 3077124
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
- Pierre Deligne, Finitude de l’extension de $\Bbb Q$ engendrée par des traces de Frobenius, en caractéristique finie, Mosc. Math. J. 12 (2012), no. 3, 497–514, 668 (French, with French and Russian summaries). MR 3024820, DOI 10.17323/1609-4514-2012-12-3-497-514
- V. G. Drinfel′d, Langlands’ conjecture for $\textrm {GL}(2)$ over functional fields, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) Acad. Sci. Fennica, Helsinki, 1980, pp. 565–574. MR 562656
- V. G. Drinfel′d, Moduli varieties of $F$-sheaves, Funktsional. Anal. i Prilozhen. 21 (1987), no. 2, 23–41 (Russian). MR 902291
- V. G. Drinfel′d, Cohomology of compactified moduli varieties of $F$-sheaves of rank $2$, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 162 (1987), no. Avtomorfn. Funkts. i Teor. Chisel. III, 107–158, 189 (Russian); English transl., J. Soviet Math. 46 (1989), no. 2, 1789–1821. MR 918745, DOI 10.1007/BF01099348
- V. G. Drinfel′d, Proof of the Petersson conjecture for $\textrm {GL}(2)$ over a global field of characteristic $p$, Funktsional. Anal. i Prilozhen. 22 (1988), no. 1, 34–54, 96 (Russian); English transl., Funct. Anal. Appl. 22 (1988), no. 1, 28–43. MR 936697, DOI 10.1007/BF01077720
- V. G. Drinfel′d and Carlos Simpson, $B$-structures on $G$-bundles and local triviality, Math. Res. Lett. 2 (1995), no. 6, 823–829. MR 1362973, DOI 10.4310/MRL.1995.v2.n6.a13
- Vladimir Drinfeld, On a conjecture of Deligne, Mosc. Math. J. 12 (2012), no. 3, 515–542, 668 (English, with English and Russian summaries). MR 3024821, DOI 10.17323/1609-4514-2012-12-3-515-542
- Vladimir Drinfeld, On the pro-semisimple completion of the fundamental group of a smooth variety over a finite field, 2015, arXiv:1509.06059.
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Hélène Esnault and Moritz Kerz, A finiteness theorem for Galois representations of function fields over finite fields (after Deligne), Acta Math. Vietnam. 37 (2012), no. 4, 531–562. MR 3058662
- Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford. MR 1083353, DOI 10.1007/978-3-662-02632-8
- Gerd Faltings, Group schemes with strict $\scr O$-action, Mosc. Math. J. 2 (2002), no. 2, 249–279. Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR 1944507, DOI 10.17323/1609-4514-2002-2-2-249-279
- Michael Finkelberg and Sergey Lysenko, Twisted geometric Satake equivalence, J. Inst. Math. Jussieu 9 (2010), no. 4, 719–739. MR 2684259, DOI 10.1017/S1474748010000034
- Ferdinand G. Frobenius, Über die Primfactoren der Gruppendeterminante, Ges. Abh III (S’ber. Akad. Wiss. Berlin) 1343–1382 (1896).
- D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), no. 2, 253–280. MR 1826370, DOI 10.1007/s002220100122
- D. Gaitsgory, On a vanishing conjecture appearing in the geometric Langlands correspondence, Ann. of Math. (2) 160 (2004), no. 2, 617–682. MR 2123934, DOI 10.4007/annals.2004.160.617
- D. Gaitsgory, On de Jong’s conjecture, Israel J. Math. 157 (2007), 155–191. MR 2342444, DOI 10.1007/s11856-006-0006-2
- Dennis Gaitsgory, Outline of the proof of the geometric Langlands conjecture for $GL_2$, Astérisque 370 (2015), 1–112 (English, with English and French summaries). MR 3364744
- Dennis Gaitsgory and Sergey Lysenko, Parameters and duality for the metaplectic geometric Langlands theory. , 2016, arXiv:1608.00284 .
- Wee Teck Gan and Fan Gao, The Langlands-Weissman Program for Brylinski-Deligne extensions, 2014, arXiv:1409.4039.
- Alain Genestier and Jacques Tilouine, Systèmes de Taylor-Wiles pour $\rm GSp_4$, Astérisque 302 (2005), 177–290 (French, with English and French summaries). Formes automorphes. II. Le cas du groupe $\rm GSp(4)$. MR 2234862
- Alain Genestier and Vincent Lafforgue, Théorie de Fontaine en égales caractéristiques, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 2, 263–360 (French, with English and French summaries). MR 2830388, DOI 10.24033/asens.2144
- Alain Genestier and Vincent Lafforgue, Chtoucas restreints pour les groupes réductifs et paramétrisation de Langlands locale , 2017, arXiv:1709.00978.
- Victor Ginzburg, Perverse sheaves on a loop group and Langlands duality, 1995, arXiv:alg-geom/9511007.
- Benedict H. Gross, On the Satake isomorphism, Galois representations in arithmetic algebraic geometry (Durham, 1996) London Math. Soc. Lecture Note Ser., vol. 254, Cambridge Univ. Press, Cambridge, 1998, pp. 223–237. MR 1696481, DOI 10.1017/CBO9780511662010.006
- G. Harder, Chevalley groups over function fields and automorphic forms, Ann. of Math. (2) 100 (1974), 249–306. MR 563090, DOI 10.2307/1971073
- Jochen Heinloth, Uniformization of $\scr G$-bundles, Math. Ann. 347 (2010), no. 3, 499–528. MR 2640041, DOI 10.1007/s00208-009-0443-4
- Jochen Heinloth and Alexander H. W. Schmitt, The cohomology rings of moduli stacks of principal bundles over curves, Doc. Math. 15 (2010), 423–488. MR 2657374
- David Hilbert, Ueber die vollen Invariantensysteme, Math. Ann. 42 (1893), no. 3, 313–373 (German). MR 1510781, DOI 10.1007/BF01444162
- Kaoru Hiraga and Hiroshi Saito, On $L$-packets for inner forms of $SL_n$, Mem. Amer. Math. Soc. 215 (2012), no. 1013, vi+97. MR 2918491, DOI 10.1090/S0065-9266-2011-00642-8
- Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006. MR 2266432
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. MR 2665168, DOI 10.1017/CBO9780511711985
- H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499–558. MR 618323, DOI 10.2307/2374103
- H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), no. 4, 777–815. MR 623137, DOI 10.2307/2374050
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565, DOI 10.2307/2374264
- Uwe Jannsen, On finite-dimensional motives and Murre’s conjecture, Algebraic cycles and motives. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 344, Cambridge Univ. Press, Cambridge, 2007, pp. 112–142. MR 2187152
- D. A. Kazhdan, An introduction to Drinfel′d’s “Shtuka”, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 347–356. MR 546623
- David Kazhdan and Yakov Varshavsky, On the cohomology of the moduli spaces of $F$-bundles: stable cuspidal Deligne-Lusztig part, in preparation, 2013. Work annonced in [Var05].
- Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. MR 114875, DOI 10.2307/2372999
- Robert E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611–650. MR 757954, DOI 10.1215/S0012-7094-84-05129-9
- Robert E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), no. 3, 365–399. MR 858284, DOI 10.1007/BF01458611
- Robert E. Kottwitz, Shimura varieties and $\lambda$-adic representations, Automorphic forms, Shimura varieties, and $L$-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 161–209. MR 1044820
- J.-P. Labesse and R. P. Langlands, $L$-indistinguishability for $\textrm {SL}(2)$, Canadian J. Math. 31 (1979), no. 4, 726–785. MR 540902, DOI 10.4153/CJM-1979-070-3
- Laurent Lafforgue, Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson, Astérisque 243 (1997), ii+329 (French). MR 1600006
- Laurent Lafforgue, Une compactification des champs classifiant les chtoucas de Drinfeld, J. Amer. Math. Soc. 11 (1998), no. 4, 1001–1036 (French, with English and French summaries). MR 1609893, DOI 10.1090/S0894-0347-98-00272-0
- Laurent Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), no. 1, 1–241 (French, with English and French summaries). MR 1875184, DOI 10.1007/s002220100174
- Laurent Lafforgue, Chtoucas de Drinfeld, formule des traces d’Arthur-Selberg et correspondance de Langlands, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 383–400 (French, with French summary). MR 1989194
- R. P. Langlands, Problems in the theory of automorphic forms, Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin-New York, 1970, pp. 18–61. MR 302614
- Erez M. Lapid, Some results on multiplicities for $\textrm {SL}(n)$, Israel J. Math. 112 (1999), 157–186. MR 1714998, DOI 10.1007/BF02773481
- Michael Larsen, On the conjugacy of element-conjugate homomorphisms, Israel J. Math. 88 (1994), no. 1-3, 253–277. MR 1303498, DOI 10.1007/BF02937514
- Michael Larsen, On the conjugacy of element-conjugate homomorphisms. II, Quart. J. Math. Oxford Ser. (2) 47 (1996), no. 185, 73–85. MR 1380951, DOI 10.1093/qmath/47.1.73
- Yves Laszlo and Martin Olsson, The six operations for sheaves on Artin stacks. I. Finite coefficients, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 109–168. MR 2434692, DOI 10.1007/s10240-008-0011-6
- Yves Laszlo and Martin Olsson, The six operations for sheaves on Artin stacks. II. Adic coefficients, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 169–210. MR 2434693, DOI 10.1007/s10240-008-0012-5
- Eike Sören Lau, On generalised $D$-shtukas, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 369, Universität Bonn, Mathematisches Institut, Bonn, 2004. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2004. MR 2206061
- Eike Lau, On degenerations of $\scr D$-shtukas, Duke Math. J. 140 (2007), no. 2, 351–389. MR 2359823, DOI 10.1215/S0012-7094-07-14025-0
- G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 131–210 (French). MR 908218, DOI 10.1007/BF02698937
- Gérard Laumon, Cohomology of Drinfeld modular varieties. Part I, Cambridge Studies in Advanced Mathematics, vol. 41, Cambridge University Press, Cambridge, 1996. Geometry, counting of points and local harmonic analysis. MR 1381898
- Gérard Laumon, Cohomology of Drinfeld modular varieties. Part II, Cambridge Studies in Advanced Mathematics, vol. 56, Cambridge University Press, Cambridge, 1997. Automorphic forms, trace formulas and Langlands correspondence; With an appendix by Jean-Loup Waldspurger. MR 1439250, DOI 10.1017/CBO9780511661969
- G. Laumon, Drinfeld shtukas, Vector bundles on curves—new directions (Cetraro, 1995) Lecture Notes in Math., vol. 1649, Springer, Berlin, 1997, pp. 50–109. MR 1605028, DOI 10.1007/BFb0094425
- Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927, DOI 10.1007/978-3-540-24899-6
- G. Laumon, M. Rapoport, and U. Stuhler, ${\scr D}$-elliptic sheaves and the Langlands correspondence, Invent. Math. 113 (1993), no. 2, 217–338. MR 1228127, DOI 10.1007/BF01244308
- Alexander Lubotzky and Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985), no. 336, xi+117. MR 818915, DOI 10.1090/memo/0336
- George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- Sergey Lysenko, Moduli of metaplectic bundles on curves and theta-sheaves, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 3, 415–466 (English, with English and French summaries). MR 2265675, DOI 10.1016/j.ansens.2006.01.003
- Sergey Lysenko, Geometric theta-lifting for the dual pair $\Bbb S\Bbb O_{2m},\Bbb S\textrm {p}_{2n}$, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 3, 427–493 (English, with English and French summaries). MR 2839456, DOI 10.24033/asens.2147
- Sergey Lysenko, Twisted geometric Satake equivalence: reductive case, 2014, arXiv:1411.6782.
- Sergey Lysenko, Twisted geometric Langlands correspondence for a torus, Int. Math. Res. Not. IMRN 18 (2015), 8680–8723. MR 3417689, DOI 10.1093/imrn/rnu220
- Peter J. McNamara, Principal series representations of metaplectic groups over local fields, Multiple Dirichlet series, L-functions and automorphic forms, Progr. Math., vol. 300, Birkhäuser/Springer, New York, 2012, pp. 299–327. MR 2963537, DOI 10.1007/978-0-8176-8334-4_{1}3
- I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, DOI 10.4007/annals.2007.166.95
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- Báo Châu Ngô, Faisceaux pervers, homomorphisme de changement de base et lemme fondamental de Jacquet et Ye, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 5, 619–679 (French, with English and French summaries). MR 1710755, DOI 10.1016/S0012-9593(01)80002-1
- Bao Châu Ngô, $\scr D$-chtoucas de Drinfeld à modifications symétriques et identité de changement de base, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 2, 197–243 (French, with English and French summaries). MR 2245532, DOI 10.1016/j.ansens.2005.12.005
- Bao Châu Ngô, Fibration de Hitchin et endoscopie, Invent. Math. 164 (2006), no. 2, 399–453 (French, with English summary). MR 2218781, DOI 10.1007/s00222-005-0483-7
- Bao Châu Ngô and Tuân Ngô Dac, Comptage de $G$-chtoucas: la partie régulière elliptique, J. Inst. Math. Jussieu 7 (2008), no. 1, 181–203 (French, with English and French summaries). MR 2398149, DOI 10.1017/S147474800700014X
- Tuan Ngo Dac, Compactification des champs de chtoucas et théorie géométrique des invariants, Astérisque 313 (2007), 124 (French, with English and French summaries). MR 2419827
- Tuân Ngô Dac, Sur le développement spectral de la formule des traces d’Arthur-Selberg sur les corps de fonctions, Bull. Soc. Math. France 137 (2009), no. 4, 545–586 (French, with English and French summaries). MR 2572181, DOI 10.24033/bsmf.2582
- Tuân Ngô Dac, Formule des traces d’Arthur-Selberg pour les corps de fonctions II, http://www.math.univ-paris13.fr/~ngodac/traceformula2.pdf.
- G. Pappas and M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 118–198. With an appendix by T. Haines and Rapoport. MR 2435422, DOI 10.1016/j.aim.2008.04.006
- Elisha Peterson, On a Diagrammatic Proof of the Cayley-Hamilton Theorem, 2009, arXiv:0907.2364.
- I. I. Pjateckij-Šapiro, Euler subgroups, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted Press, New York-Toronto, Ont., 1975, pp. 597–620. MR 406935
- H. Poincaré, Sur les groupes des équations linéaires, Acta Math. 4 (1884), no. 1, 201–312 (French). MR 1554639, DOI 10.1007/BF02418420
- C. Procesi, The invariant theory of $n\times n$ matrices, Advances in Math. 19 (1976), no. 3, 306–381. MR 419491, DOI 10.1016/0001-8708(76)90027-X
- Claudio Procesi, A formal inverse to the Cayley-Hamilton theorem, J. Algebra 107 (1987), no. 1, 63–74. MR 883869, DOI 10.1016/0021-8693(87)90073-1
- Ryan Cohen Reich, Twisted geometric Satake equivalence via gerbes on the factorizable Grassmannian, Represent. Theory 16 (2012), 345–449. MR 2956088, DOI 10.1090/S1088-4165-2012-00420-4
- R. W. Richardson, Conjugacy classes of $n$-tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988), no. 1, 1–35. MR 952224, DOI 10.1215/S0012-7094-88-05701-8
- Timo Richarz, A new approach to the geometric Satake equivalence, Doc. Math. 19 (2014), 209–246. MR 3178249
- Raphaël Rouquier, Caractérisation des caractères et pseudo-caractères, J. Algebra 180 (1996), no. 2, 571–586 (French). MR 1378546, DOI 10.1006/jabr.1996.0083
- Ichirô Satake, Theory of spherical functions on reductive algebraic groups over ${\mathfrak {p}}$-adic fields, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 5–69. MR 195863, DOI 10.1007/BF02684781
- Simon Schieder, The Harder-Narasimhan stratification of the moduli stack of $G$-bundles via Drinfeld’s compactifications, Selecta Math. (N.S.) 21 (2015), no. 3, 763–831. MR 3366920, DOI 10.1007/s00029-014-0161-y
- Jean-Pierre Serre, Complète réductibilité, Astérisque 299 (2005), Exp. No. 932, viii, 195–217 (French, with French summary). Séminaire Bourbaki. Vol. 2003/2004. MR 2167207
- C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, vol. 96, Société Mathématique de France, Paris, 1982 (French). Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980. MR 699278
- J. A. Shalika, The multiplicity one theorem for $\textrm {GL}_{n}$, Ann. of Math. (2) 100 (1974), 171–193. MR 348047, DOI 10.2307/1971071
- Christoph Sorger, Lectures on moduli of principal $G$-bundles over algebraic curves, School on Algebraic Geometry (Trieste, 1999) ICTP Lect. Notes, vol. 1, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2000, pp. 1–57. MR 1795860
- Richard Taylor, Galois representations associated to Siegel modular forms of low weight, Duke Math. J. 63 (1991), no. 2, 281–332. MR 1115109, DOI 10.1215/S0012-7094-91-06312-X
- Nguyen Quoc Thang, On Galois cohomology and weak approximation of connected reductive groups over fields of positive characteristic, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), no. 10, 203–208. MR 2863415
- Yakov Varshavsky, Moduli spaces of principal $F$-bundles, Selecta Math. (N.S.) 10 (2004), no. 1, 131–166. MR 2061225, DOI 10.1007/s00029-004-0343-0
- Yakov Varshavsky, A proof of a generalization of Deligne’s conjecture, Electron. Res. Announc. Amer. Math. Soc. 11 (2005), 78–88. MR 2176068, DOI 10.1090/S1079-6762-05-00150-2
- Yakov Varshavsky, Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara, Geom. Funct. Anal. 17 (2007), no. 1, 271–319. MR 2306659, DOI 10.1007/s00039-007-0596-9
- Yakov Varshavsky, Towards Langlands correspondence over function fields for split reductive groups, Symmetries in algebra and number theory (SANT), Universitätsverlag Göttingen, Göttingen, 2009, pp. 139–147. MR 2882571
- Yakov Varshavsky, Communication personnelle, janvier 2016.
- E. B. Vinberg, On invariants of a set of matrices, J. Lie Theory 6 (1996), no. 2, 249–269. MR 1424635
- Jonathan Wang, The moduli stack of G-bundles, 2011, arXiv:1104.4828.
- Jonathan Peiyu Wang, On an Invariant Bilinear Form on the Space of Automorphic Forms via Asymptotics, ProQuest LLC, Ann Arbor, MI, 2017. Thesis (Ph.D.)–The University of Chicago. MR 3705922
- Song Wang, Dimension Data, Local and Global Conjugacy in Reductive Groups, 2007, arXiv:0707.0144v2.
- Song Wang, On dimension data and local vs. global conjugacy, Fifth International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., 51, pt. 1, vol. 2, Amer. Math. Soc., Providence, RI, 2012, pp. 365–382. MR 2908081
- Song Wang, On local and global conjugacy, J. Algebra 439 (2015), 334–359. MR 3373375, DOI 10.1016/j.jalgebra.2015.05.001
- Martin H. Weissman, Split metaplectic groups and their L-groups, J. Reine Angew. Math. 696 (2014), 89–141. MR 3276164, DOI 10.1515/crelle-2012-0111
- Martin H. Weissman, L-groups and parameters for covering groups, 2015, arXiv:1507.01042.
- A. Wiles, On ordinary $\lambda$-adic representations associated to modular forms, Invent. Math. 94 (1988), no. 3, 529–573. MR 969243, DOI 10.1007/BF01394275
- Liang Xiao and Xinwen Zhu, Cycles on Shimura varieties via geometric Satake, 2017, arXiv:1707.05700.
- Cong Xue, Cohomologie cuspidale des champs de chtoucas, Thèse de doctorat, Université Paris-Saclay (2017).
- Xinwen Zhu, The geometric Satake correspondence for ramified groups, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 2, 409–451 (English, with English and French summaries). MR 3346175, DOI 10.24033/asens.2248
Bibliographic Information
- Vincent Lafforgue
- Affiliation: CNRS et Institut Fourier, UMR 5582, Université Grenoble Alpes, 100 rue des Maths, 38610 Gières, France
- Email: vlafforg@math.cnrs.fr
- Received by editor(s): December 13, 2012
- Received by editor(s) in revised form: October 15, 2013, September 19, 2015, August 11, 2017, December 20, 2017, and January 5, 2018
- Published electronically: February 23, 2018
- Additional Notes: L’auteur fait partie de l’ANR-13-BS01-0001-01
- © Copyright 2018 American Mathematical Society
- Journal: J. Amer. Math. Soc. 31 (2018), 719-891
- MSC (2010): Primary 14G35, 14H60, 11F70
- DOI: https://doi.org/10.1090/jams/897
- MathSciNet review: 3787407