Khovanov homology from Floer cohomology
HTML articles powered by AMS MathViewer
- by Mohammed Abouzaid and Ivan Smith;
- J. Amer. Math. Soc. 32 (2019), 1-79
- DOI: https://doi.org/10.1090/jams/902
- Published electronically: July 27, 2018
- HTML | PDF | Request permission
Previous version: Original version posted July 27, 2018
Corrected version: Current version corrects publisher's error which introduced a spurious ``i'' before the overcrossing symbols in equations (7.7) and (7.9) and on the first line of text following equation (7.9).
Abstract:
This paper realises the Khovanov homology of a link in $S^3$ as a Lagrangian Floer cohomology group, establishing a conjecture of Seidel and the second author. The starting point is the previously established formality theorem for the symplectic arc algebra over a field $\mathbf {k}$ of characteristic zero. Here we prove the symplectic cup and cap bimodules, which relate different symplectic arc algebras, are themselves formal over $\mathbf {k}$, and we construct a long exact triangle for symplectic Khovanov cohomology. We then prove the symplectic and combinatorial arc algebras are isomorphic over $\mathbb {Z}$ in a manner compatible with the cup bimodules. It follows that Khovanov cohomology and symplectic Khovanov cohomology co-incide in characteristic zero.References
- Mohammed Abouzaid, Morse homology, tropical geometry, and homological mirror symmetry for toric varieties, Selecta Math. (N.S.) 15 (2009), no. 2, 189–270. MR 2529936, DOI 10.1007/s00029-009-0492-2
- Mohammed Abouzaid, A topological model for the Fukaya categories of plumbings, J. Differential Geom. 87 (2011), no. 1, 1–80. MR 2786590
- M. Abouzaid and S. Ganatra, Generating Fukaya categories of LG Models (in preparation).
- Mohammed Abouzaid and Paul Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010), no. 2, 627–718. MR 2602848, DOI 10.2140/gt.2010.14.627
- M. Abouzaid and P. Seidel, Lefschetz fibration methods in wrapped Floer cohomology (in preparation).
- Mohammed Abouzaid and Ivan Smith, The symplectic arc algebra is formal, Duke Math. J. 165 (2016), no. 6, 985–1060. MR 3486414, DOI 10.1215/00127094-3449459
- Denis Auroux, Fukaya categories of symmetric products and bordered Heegaard-Floer homology, J. Gökova Geom. Topol. GGT 4 (2010), 1–54. MR 2755992
- Augustin Banyaga and David E. Hurtubise, Cascades and perturbed Morse-Bott functions, Algebr. Geom. Topol. 13 (2013), no. 1, 237–275. MR 3031642, DOI 10.2140/agt.2013.13.237
- Arnaud Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984) (French). MR 730926
- A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves. Preprint, available at http://www.math.uchicago.edu/?mitya/langlands/
- Paul Biran and Octav Cornea, A Lagrangian quantum homology, New perspectives and challenges in symplectic field theory, CRM Proc. Lecture Notes, vol. 49, Amer. Math. Soc., Providence, RI, 2009, pp. 1–44. MR 2555932, DOI 10.1090/crmp/049/01
- Paul Biran and Octav Cornea, Lagrangian cobordism and Fukaya categories, Geom. Funct. Anal. 24 (2014), no. 6, 1731–1830. MR 3283928, DOI 10.1007/s00039-014-0305-4
- Paul Biran and Octav Cornea, Cone-decompositions of Lagrangian cobordisms in Lefschetz fibrations, Selecta Math. (N.S.) 23 (2017), no. 4, 2635–2704. MR 3703462, DOI 10.1007/s00029-017-0318-6
- Sylvain E. Cappell, Ronnie Lee, and Edward Y. Miller, On the Maslov index, Comm. Pure Appl. Math. 47 (1994), no. 2, 121–186. MR 1263126, DOI 10.1002/cpa.3160470202
- Sabin Cautis and Joel Kamnitzer, Knot homology via derived categories of coherent sheaves. I. The ${\mathfrak {sl}}(2)$-case, Duke Math. J. 142 (2008), no. 3, 511–588. MR 2411561, DOI 10.1215/00127094-2008-012
- Sabin Cautis and Joel Kamnitzer, Knot homology via derived categories of coherent sheaves IV, coloured links, Quantum Topol. 8 (2017), no. 2, 381–411. MR 3659494, DOI 10.4171/QT/93
- Kai Cieliebak and Yakov Eliashberg, From Stein to Weinstein and back, American Mathematical Society Colloquium Publications, vol. 59, American Mathematical Society, Providence, RI, 2012. Symplectic geometry of affine complex manifolds. MR 3012475, DOI 10.1090/coll/059
- Bo Deng, The Šil′nikov problem, exponential expansion, strong $\lambda$-lemma, $C^1$-linearization, and homoclinic bifurcation, J. Differential Equations 79 (1989), no. 2, 189–231. MR 1000687, DOI 10.1016/0022-0396(89)90100-9
- Vladimir Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691. MR 2028075, DOI 10.1016/j.jalgebra.2003.05.001
- Kenji Fukaya and Yong-Geun Oh, Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997), no. 1, 96–180. MR 1480992, DOI 10.4310/AJM.1997.v1.n1.a5
- Sheel Ganatra, Symplectic Cohomology and Duality for the Wrapped Fukaya Category, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 3121862
- Joel Kamnitzer, The Beilinson-Drinfeld Grassmannian and symplectic knot homology, Grassmannians, moduli spaces and vector bundles, Clay Math. Proc., vol. 14, Amer. Math. Soc., Providence, RI, 2011, pp. 81–94. MR 2807850
- Rajesh Kasturirangan and Yong-Geun Oh, Floer homology of open subsets and a relative version of Arnold’s conjecture, Math. Z. 236 (2001), no. 1, 151–189. MR 1812454, DOI 10.1007/PL00004822
- Ailsa M. Keating, Dehn twists and free subgroups of symplectic mapping class groups, J. Topol. 7 (2014), no. 2, 436–474. MR 3217627, DOI 10.1112/jtopol/jtt033
- Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426. MR 1740682, DOI 10.1215/S0012-7094-00-10131-7
- Mikhail Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002), 665–741. MR 1928174, DOI 10.2140/agt.2002.2.665
- Mikhail Khovanov, Crossingless matchings and the cohomology of $(n,n)$ Springer varieties, Commun. Contemp. Math. 6 (2004), no. 4, 561–577. MR 2078414, DOI 10.1142/S0219199704001471
- Mikhail Khovanov and Paul Seidel, Quivers, Floer cohomology, and braid group actions, J. Amer. Math. Soc. 15 (2002), no. 1, 203–271. MR 1862802, DOI 10.1090/S0894-0347-01-00374-5
- Volodymyr Lyubashenko and Sergiy Ovsienko, A construction of quotient $A_\infty$-categories, Homology Homotopy Appl. 8 (2006), no. 2, 157–203. MR 2259271, DOI 10.4310/HHA.2006.v8.n2.a9
- V. Lyubashenko and S. Ovsienko, $A_\infty$ bimodules and Serre $A_\infty$ functors, in Geometry and dynamics of groups and spaces, 565–645, 2008.
- Ciprian Manolescu, Nilpotent slices, Hilbert schemes, and the Jones polynomial, Duke Math. J. 132 (2006), no. 2, 311–369. MR 2219260, DOI 10.1215/S0012-7094-06-13224-6
- S. Mau, K. Wehrheim, and C. Woodward, $A_{\infty }$ functors for Lagrangian correspondences. Preprint, available at arXiv:1601.04919.
- David Nadler and Eric Zaslow, Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009), no. 1, 233–286. MR 2449059, DOI 10.1090/S0894-0347-08-00612-7
- Yong-Geun Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math. 46 (1993), no. 7, 949–993. MR 1223659, DOI 10.1002/cpa.3160460702
- Peter S. Ozsváth, Jacob Rasmussen, and Zoltán Szabó, Odd Khovanov homology, Algebr. Geom. Topol. 13 (2013), no. 3, 1465–1488. MR 3071132, DOI 10.2140/agt.2013.13.1465
- L. Polterovich, The surgery of Lagrange submanifolds, Geom. Funct. Anal. 1 (1991), no. 2, 198–210. MR 1097259, DOI 10.1007/BF01896378
- Marcin Poźniak, Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 119–181. MR 1736217, DOI 10.1090/trans2/196/08
- Reza Rezazadegan, Seidel-Smith cohomology for tangles, Selecta Math. (N.S.) 15 (2009), no. 3, 487–518. MR 2551191, DOI 10.1007/s00029-009-0002-6
- Reza Rezazadegan, Pseudoholomorphic quilts and Khovanov homology, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick. MR 2717939
- Heather M. Russell and Julianna S. Tymoczko, Springer representations on the Khovanov Springer varieties, Math. Proc. Cambridge Philos. Soc. 151 (2011), no. 1, 59–81. MR 2801314, DOI 10.1017/S0305004111000132
- Paul Seidel, Lectures on four-dimensional Dehn twists, Symplectic 4-manifolds and algebraic surfaces, Lecture Notes in Math., vol. 1938, Springer, Berlin, 2008, pp. 231–267. MR 2441414, DOI 10.1007/978-3-540-78279-7_{4}
- Paul Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003), no. 5, 1003–1063. MR 1978046, DOI 10.1016/S0040-9383(02)00028-9
- Paul Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000), no. 1, 103–149 (English, with English and French summaries). MR 1765826, DOI 10.24033/bsmf.2365
- Paul Seidel, A biased view of symplectic cohomology, Current developments in mathematics, 2006, Int. Press, Somerville, MA, 2008, pp. 211–253. MR 2459307
- Jean-Claude Sikorav, Some properties of holomorphic curves in almost complex manifolds, Holomorphic curves in symplectic geometry, Progr. Math., vol. 117, Birkhäuser, Basel, 1994, pp. 165–189. MR 1274929, DOI 10.1007/978-3-0348-8508-9_{6}
- Paul Seidel, $A_\infty$-subalgebras and natural transformations, Homology Homotopy Appl. 10 (2008), no. 2, 83–114. MR 2426130, DOI 10.4310/HHA.2008.v10.n2.a4
- Paul Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2441780, DOI 10.4171/063
- Paul Seidel, Homological mirror symmetry for the genus two curve, J. Algebraic Geom. 20 (2011), no. 4, 727–769. MR 2819674, DOI 10.1090/S1056-3911-10-00550-3
- Paul Seidel, Fukaya $A_\infty$-structures associated to Lefschetz fibrations. I, J. Symplectic Geom. 10 (2012), no. 3, 325–388. MR 2983434, DOI 10.4310/JSG.2012.v10.n3.a1
- Paul Seidel, Fukaya $A_\infty$-structures associated to Lefschetz fibrations. II, Algebra, geometry, and physics in the 21st century, Progr. Math., vol. 324, Birkhäuser/Springer, Cham, 2017, pp. 295–364. MR 3727564, DOI 10.1007/978-3-319-59939-7_{8}
- P. Seidel, Lectures on categorical dynamics and symplectic topology. Preprint, available at www-math.mit.edu/ seidel
- Paul Seidel and Ivan Smith, A link invariant from the symplectic geometry of nilpotent slices, Duke Math. J. 134 (2006), no. 3, 453–514. MR 2254624, DOI 10.1215/S0012-7094-06-13432-4
- Nick Sheridan, Homological mirror symmetry for Calabi-Yau hypersurfaces in projective space, Invent. Math. 199 (2015), no. 1, 1–186. MR 3294958, DOI 10.1007/s00222-014-0507-2
- Peter Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, vol. 815, Springer, Berlin, 1980. MR 584445, DOI 10.1007/BFb0090294
- Catharina Stroppel and Ben Webster, 2-block Springer fibers: convolution algebras and coherent sheaves, Comment. Math. Helv. 87 (2012), no. 2, 477–520. MR 2914857, DOI 10.4171/CMH/261
- Katrin Wehrheim and Chris T. Woodward, Quilted Floer cohomology, Geom. Topol. 14 (2010), no. 2, 833–902. MR 2602853, DOI 10.2140/gt.2010.14.833
- Katrin Wehrheim and Chris T. Woodward, Exact triangle for fibered Dehn twists, Res. Math. Sci. 3 (2016), Paper No. 17, 75. MR 3536436, DOI 10.1186/s40687-016-0065-x
- S. Wehrli, A remark on the topology of $(n,n)$-Springer varieties. Preprint, available at arXiv:0908.2185.
Bibliographic Information
- Mohammed Abouzaid
- Affiliation: Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
- MR Author ID: 734175
- Ivan Smith
- Affiliation: Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, England
- MR Author ID: 650668
- Received by editor(s): April 6, 2015
- Received by editor(s) in revised form: December 31, 2017
- Published electronically: July 27, 2018
- Additional Notes: The first author was partially supported by NSF grants DMS-1308179, DMS-1609148, and DMS-1564172, and by the Simons Foundation through its “Homological Mirror Symmetry” collaboration grant
The second author is partially supported by a fellowship from EPSRC - © Copyright 2018 American Mathematical Society
- Journal: J. Amer. Math. Soc. 32 (2019), 1-79
- MSC (2010): Primary 53D40; Secondary 53D37, 57M25
- DOI: https://doi.org/10.1090/jams/902
- MathSciNet review: 3867999