A Darboux theorem for derived schemes with shifted symplectic structure
HTML articles powered by AMS MathViewer
- by Christopher Brav, Vittoria Bussi and Dominic Joyce;
- J. Amer. Math. Soc. 32 (2019), 399-443
- DOI: https://doi.org/10.1090/jams/910
- Published electronically: October 1, 2018
- HTML | PDF | Request permission
Abstract:
We prove a Darboux theorem for derived schemes with symplectic forms of degree $k<0$, in the sense of Pantev, Toën, Vaquié, and Vezzosi. More precisely, we show that a derived scheme $\mathbfit{X}$ with symplectic form $\tilde {\omega }$ of degree $k$ is locally equivalent to $(\operatorname{Spec} A,\omega)$ for $\operatorname{Spec} A$ an affine derived scheme in which the cdga $A$ has Darboux-like coordinates with respect to which the symplectic form $\omega$ is standard, and in which the differential in $A$ is given by a Poisson bracket with a Hamiltonian function $\Phi$ of degree $k+1$.
When $k=-1$, this implies that a $-1$-shifted symplectic derived scheme $(\mathbfit{X},\tilde {\omega })$ is Zariski locally equivalent to the derived critical locus $\operatorname{Crit}(\Phi )$ of a regular function $\Phi :U\rightarrow {\mathbb A}^1$ on a smooth scheme $U$. We use this to show that the classical scheme $X=t_0(\mathbfit{X})$ has the structure of an algebraic d-critical locus, in the sense of Joyce.
In a series of works, the authors and their collaborators extend these results to (derived) Artin stacks, and discuss a Lagrangian neighbourhood theorem for shifted symplectic derived schemes, and applications to categorified and motivic Donaldson–Thomas theory of Calabi–Yau 3-folds, and to defining new Donaldson–Thomas type invariants of Calabi–Yau 4-folds, and to defining Fukaya categories of Lagrangians in algebraic symplectic manifolds using perverse sheaves.
References
- Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. MR 2600874, DOI 10.4007/annals.2009.170.1307
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI 10.1007/s002220050136
- Oren Ben-Bassat, Christopher Brav, Vittoria Bussi, and Dominic Joyce, A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol. 19 (2015), no. 3, 1287–1359. MR 3352237, DOI 10.2140/gt.2015.19.1287
- David Ben-Zvi and David Nadler, Loop spaces and connections, J. Topol. 5 (2012), no. 2, 377–430. MR 2928082, DOI 10.1112/jtopol/jts007
- Dennis Borisov and Dominic Joyce, Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds, Geom. Topol. 21 (2017), no. 6, 3231–3311. MR 3692967, DOI 10.2140/gt.2017.21.3231
- E. Bouaziz and I. Grojnowski, A $d$-shifted Darboux theorem, arXiv:1309.2197 (2013).
- C. Brav, V. Bussi, D. Dupont, D. Joyce, and B. Szendrői, Symmetries and stabilization for sheaves of vanishing cycles, J. Singul. 11 (2015), 85–151. With an appendix by Jörg Schürmann. MR 3353002, DOI 10.5427/jsing.2015.11e
- V. Bussi, Categorification of Lagrangian intersections on complex symplectic manifolds using perverse sheaves of vanishing cycles, arXiv:1404.1329 (2014).
- V. Bussi, D. Joyce and S. Meinhardt, On motivic vanishing cycles of critical loci, arXiv: 1305. 6428 (2013).
- Ioannis Emmanouil, The cyclic homology of affine algebras, Invent. Math. 121 (1995), no. 1, 1–19. MR 1345282, DOI 10.1007/BF01884288
- Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. MR 1950475, DOI 10.1007/978-3-662-12492-5
- Paul Goerss and Kristen Schemmerhorn, Model categories and simplicial methods, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 3–49. MR 2355769, DOI 10.1090/conm/436/08403
- Thomas G. Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985), no. 2, 187–215. MR 793184, DOI 10.1016/0040-9383(85)90055-2
- Kathryn Hess, Rational homotopy theory: a brief introduction, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 175–202. MR 2355774, DOI 10.1090/conm/436/08409
- Daniel Huybrechts and Richard P. Thomas, Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann. 346 (2010), no. 3, 545–569. MR 2578562, DOI 10.1007/s00208-009-0397-6
- Dominic Joyce, A classical model for derived critical loci, J. Differential Geom. 101 (2015), no. 2, 289–367. MR 3399099
- D. Joyce and P. Safronov, A Lagrangian neighbourhood theorem for shifted symplectic derived schemes, to appear in Annales de la Faculté des Sciences de Toulouse, 2018. arXiv:1506.04024.
- Dominic Joyce and Yinan Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217 (2012), no. 1020, iv+199. MR 2951762, DOI 10.1090/S0065-9266-2011-00630-1
- Maxim Kontsevich and Yan Soibelman, Motivic Donaldson-Thomas invariants: summary of results, Mirror symmetry and tropical geometry, Contemp. Math., vol. 527, Amer. Math. Soc., Providence, RI, 2010, pp. 55–89. MR 2681792, DOI 10.1090/conm/527/10400
- Maxim Kontsevich and Yan Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 5 (2011), no. 2, 231–352. MR 2851153, DOI 10.4310/CNTP.2011.v5.n2.a1
- Jean-Louis Loday, Cyclic homology, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. MR 1217970, DOI 10.1007/978-3-662-21739-9
- J. Lurie, Derived Algebraic Geometry, PhD thesis, M.I.T., 2004. Available at http://www.math.harvard.edu/~lurie/papers/DAG.pdf.
- J. Lurie, Higher algebra, prepublication book draft (2011); available at http://www.math.harvard.edu/~lurie/papers/HA.pdf.
- Tony Pantev, Bertrand Toën, Michel Vaquié, and Gabriele Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271–328. MR 3090262, DOI 10.1007/s10240-013-0054-1
- Timo Schürg, Bertrand Toën, and Gabriele Vezzosi, Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes, J. Reine Angew. Math. 702 (2015), 1–40. MR 3341464, DOI 10.1515/crelle-2013-0037
- R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000), no. 2, 367–438. MR 1818182, DOI 10.4310/jdg/1214341649
- Bertrand Toën, Higher and derived stacks: a global overview, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 435–487. MR 2483943, DOI 10.1090/pspum/080.1/2483943
- Bertrand Toën and Gabriele Vezzosi, Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Amer. Math. Soc. 193 (2008), no. 902, x+224. MR 2394633, DOI 10.1090/memo/0902
- Bertrand Toën and Gabriele Vezzosi, From HAG to DAG: derived moduli stacks, Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, Kluwer Acad. Publ., Dordrecht, 2004, pp. 173–216. MR 2061855, DOI 10.1007/978-94-007-0948-5_{6}
- Bertrand Toën and Gabriele Vezzosi, Algèbres simpliciales $S^1$-équivariantes, théorie de de Rham et théorèmes HKR multiplicatifs, Compos. Math. 147 (2011), no. 6, 1979–2000 (French, with English and French summaries). MR 2862069, DOI 10.1112/S0010437X11005501
- G. Vezzosi, A note on the cotangent complex in derived algebraic geometry, arXiv:1008.0601 (2010).
- G. Vezzosi, Derived critical loci I: Basics, arXiv:1109.5213 (2011).
Bibliographic Information
- Christopher Brav
- Affiliation: Faculty of Mathematics, Higher School of Economics, 7 Vavilova Street, Moscow, Russia
- MR Author ID: 867687
- Email: chris.i.brav@gmail.com
- Vittoria Bussi
- Affiliation: ICTP, Strada Costiera 11, Trieste, Italy
- MR Author ID: 1093359
- Email: vbussi@ictp.it
- Dominic Joyce
- Affiliation: The Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom
- MR Author ID: 306920
- Email: joyce@maths.ox.ac.uk
- Received by editor(s): December 20, 2013
- Received by editor(s) in revised form: February 4, 2016, and July 13, 2018
- Published electronically: October 1, 2018
- Additional Notes: This research was supported by EPSRC Programme Grant EP/I033343/1.
- © Copyright 2018 American Mathematical Society
- Journal: J. Amer. Math. Soc. 32 (2019), 399-443
- MSC (2010): Primary 14A20; Secondary 14F05, 14D23, 14N35
- DOI: https://doi.org/10.1090/jams/910
- MathSciNet review: 3904157