François Charles, Bjorn Poonen

Erratum to “Bertini irreducibility theorems over finite fields”
Journal of the American Mathematical Society
DOI: 10.1090/jams/912

Accepted Manuscript

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proofread, or finalized by AMS Production staff. Once the accepted manuscript has been copyedited, proofread, and finalized by AMS Production staff, the article will be published in electronic form as a “Recently Published Article” before being placed in an issue. That electronically published article will become the Version of Record.

This preliminary version is available to AMS members prior to publication of the Version of Record, and in limited cases it is also made accessible to everyone one year after the publication date of the Version of Record.

The Version of Record is accessible to everyone five years after publication in an issue.
ERRATUM TO “BERTINI IRREDUCIBILITY THEOREMS OVER FINITE FIELDS”

FRANÇOIS CHARLES AND BJORN POONEN

Jiayu Zhao pointed out that in the proof of our Lemma 5.1 we were implicitly using what is called Lemma 3.6 below without first reducing to the case of a normal variety. To fix this, insert Lemma 3.6, replace Lemma 5.1 with the version below, and change the hypothesis on ψ in Lemma 5.2 to require ψ to be an immersion. There is also a notational error in the proof of Lemma 3.4: X'_f should be C_f. The rest of the article is unchanged.

Lemma 3.6. Let $L \supseteq k$ be a Galois extension of fields. Let $\phi: V \to W$ be a morphism of irreducible k-varieties. If W is normal, then $\# \text{Irr}_L W$ divides $\# \text{Irr}_V L$.

Proof. Let $G = \text{Gal}(L/k)$. Let $V_0 \in \text{Irr}_V L$. Since W is normal, W_L is normal by [Ray70, VII, Proposition 2.4], so the irreducible components of W_L are disjoint. Thus $\phi(V_0) \subseteq W_0$ for a unique $W_0 \in \text{Irr}_W L$. For the action of G on $\text{Irr}_V L$ and $\text{Irr}_W L$, the stabilizers satisfy $\text{Stab} V_0 \subseteq \text{Stab} W_0$. Thus $(G : \text{Stab} W_0) \text{ divides } (G : \text{Stab} V_0)$. Since W is irreducible, G acts transitively on $\text{Irr}_W L$, so $(G : \text{Stab} W_0) = \# \text{Irr}_W L$, and likewise $(G : \text{Stab} V_0) = \# \text{Irr}_V L$. \square

Lemma 5.1. Let X and Y be irreducible finite-type \mathbb{F}-schemes, with morphisms $X \xrightarrow{\phi} Y \xrightarrow{\psi} \mathbb{P}^n_\mathbb{F}$ such that π is finite étale, $\psi: Y \to \overline{\psi(Y)}$ is smooth of relative dimension s, and $\dim \overline{\psi(Y)} \geq 2$.

For f in a set of density 1, the implication

$$Y_f \text{ irreducible } \implies X_f \text{ irreducible}$$

holds.

Proof. Since irreducibility is a purely topological property, we may replace Y by Y_{red} and $\pi: X \to Y$ by its pullback to Y_{red}; then X is reduced too. Irreducibility of X_f only becomes harder to achieve if X is replaced by a higher finite étale cover of Y. In particular, we may replace X by a cover corresponding to a Galois closure of $\kappa(X)/\kappa(Y)$. So assume from now on that $X \to Y$ is Galois étale, say with Galois group G.

Choose a finite extension \mathbb{F}_r of \mathbb{F}_q with a morphism $\psi': Y' \to \mathbb{P}^n_{\mathbb{F}_r}$ and a Galois étale cover $\pi': X' \to Y'$ whose base extensions to \mathbb{F} yield ψ and π. Let $Z := \overline{\psi'(Y')}$. Let $m := \dim Z' = \dim \overline{\psi(Y)} \geq 2$. Then $\dim Y' = \dim Y = s + m$. The morphism $\psi': Y' \to Z'$ is smooth, so it maps $(Y')_{\text{smooth}}$ into $(Z')_{\text{smooth}}$.

Given a closed point $y \in Y'$, let Frob_y be the associated Frobenius conjugacy class in G. We will prove that the following claims hold for f in a set of density 1:

Claim 1. The Frob_y for $y \in (Y'_f)_{\text{smooth}}$ cover all conjugacy classes of G.

Claim 2. The \mathbb{F}_r-scheme $(X'_f)_{\text{smooth}}$ contains two closed points whose degrees over \mathbb{F}_r are coprime.

Date: May 3, 2017.

This research was supported in part by National Science Foundation grants DMS-1069236 and DMS-1601946 and a grant from the Simons Foundation (#402472 to Bjorn Poonen).
Let C be a conjugacy class in G. Let $c := \#C/\#G$. In the arguments below, for fixed X', Y', ψ', π', G, and C, the expression $o(1)$ denotes a function of e that tends to 0 as $e \to \infty$. By a function field analogue of the Chebotarev density theorem [Lan56] last display on p. 393 (which, in this setting, follows from applying the Lang–Weil estimates to all twists of the cover $Y' \to X'$), the number of closed points $y \in (Y')^{\text{smooth}}$ with residue field \mathbb{F}_r satisfying $\text{Frob}_y = C$ is $(c + o(1)) r^{(x+y)e}/e$. Since each nonempty fiber of ψ' has dimension s, there exists $c' > 0$ such that the images of these points in \mathbb{F}_q^m are at least $(c' + o(1)) r^{me}/e$ closed points $z \in (Z')^{\text{smooth}}$ with residue field of size at most r^e. For any such z, say with residue field of size r^e, the density of $\{ f : z \notin H_f \}$ is $1 - r^{-e}$, and the density of $\{ f : z \in H_f \}$ is r^{-e}, so the union of these two disjoint sets has density $1 - r^{-e} + r^{-e(1+m)} \leq 1 - r^{-e}/2 \leq 1 - r^{-e}/2$. These conditions at the finitely many z are independent, so the density of the set $\mathcal{Q}_{C,e}$ of f such that they hold at all z is at most $(1 - r^{-e}/2)(c' + o(1)) r^{me}/e$, which tends to 0 as $e \to \infty$ since $m \geq 2$. If the condition at some z fails, then $z \in (Z')^{\text{smooth}}$, and any $y \in (Y')^{\text{smooth}}$ with residue field \mathbb{F}_r with $\psi'(y) = z$ lies in $(Y')^{\text{smooth}}$, since $\psi' : Y' \to Z'$ is smooth. Thus the complement $\mathcal{P}_{C,e}$ of $\mathcal{Q}_{C,e}$ equals the set of f for which there exists $y \in (Y')^{\text{smooth}}$ such that $\kappa(y) = \mathbb{F}_r$, and $\text{Frob}_y = C$. The lower density of $\mathcal{P}_{C,e}$ tends to 1 as $e \to \infty$.

Proof of Claim 1: There are only finitely many C, so the previous sentence shows that the lower density of $\cap_C \mathcal{P}_{C,e}$ tends to 1 as $e \to \infty$.

Proof of Claim 2: If $f \in \mathcal{P}_{1,e}$, then there exists $y \in (Y')^{\text{smooth}}$ with $\kappa(y) = \mathbb{F}_r$ and $\text{Frob}_y = 1$, and any preimage $x \in X'_f$ is a point of $(X'_f)^{\text{smooth}}$ satisfying $\kappa(x) = \mathbb{F}_r$, since $X'_f \to Y'_f$ is finite étale and $\text{Frob}_y = 1$. The lower density of $\mathcal{P}_{1,e} \cap \mathcal{P}_{1,e'}$ tends to 1 as $(e,e') \to \infty$.

To complete the proof of the lemma, we show that if Y_f is irreducible and Claims 1 and 2 hold, then X_f is irreducible. Assume that Y_f is irreducible, so Y'_f is geometrically irreducible. The only subgroup of G that meets all conjugacy classes is G itself, so Claim 1 implies that $(X'_f)^{\text{smooth}} \to (Y'_f)^{\text{smooth}}$ is a finite Galois irreducible cover (with Galois group G).

If x' is a closed point of $(X'_f)^{\text{smooth}}$ of degree e over \mathbb{F}_r, then applying Lemma 3.6 to $\mathbb{F} \supset \mathbb{F}_r$ and $\{ x' \} \leftrightarrow (X'_f)^{\text{smooth}}$ shows that $\# \text{Irr } X'_f^{\text{smooth}}$ divides e. Applying this to both points in Claim 2 shows that $\# \text{Irr } X'_f^{\text{smooth}} = 1$, so X'_f^{smooth} is irreducible. On the other hand, Y_f is irreducible and Y'_f^{smooth} is nonempty, so Y'_f^{smooth} is dense in Y'_f; since $X_f \to Y_f$ is finite étale, X_f^{smooth} is dense in X_f too. Combining the previous two sentences shows that X_f is irreducible. □

References

