On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow
Authors:
Uri Bader, Pierre-Emmanuel Caprace and Jean Lécureux
Journal:
J. Amer. Math. Soc. 32 (2019), 491-562
MSC (2010):
Primary 20E42, 20F65, 22E40, 51E24; Secondary 22D40, 20E08, 22F50, 20C99
DOI:
https://doi.org/10.1090/jams/914
Published electronically:
November 27, 2018
MathSciNet review:
3904159
Full-text PDF
View in AMS MathViewer
Abstract | References | Similar Articles | Additional Information
Abstract: Let $X$ be a locally finite irreducible affine building of dimension $\geq 2$, and let $\Gamma \leq \operatorname {Aut}(X)$ be a discrete group acting cocompactly. The goal of this paper is to address the following question: When is $\Gamma$ linear? More generally, when does $\Gamma$ admit a finite-dimensional representation with infinite image over a commutative unital ring? If $X$ is the Bruhat–Tits building of a simple algebraic group over a local field and if $\Gamma$ is an arithmetic lattice, then $\Gamma$ is clearly linear. We prove that if $X$ is of type $\widetilde {A}_2$, then the converse holds. In particular, cocompact lattices in exotic $\widetilde {A}_2$-buildings are nonlinear. As an application, we obtain the first infinite family of lattices in exotic $\widetilde {A}_2$-buildings of arbitrarily large thickness, providing a partial answer to a question of W. Kantor from 1986. We also show that if $X$ is Bruhat–Tits of arbitrary type, then the linearity of $\Gamma$ implies that $\Gamma$ is virtually contained in the linear part of the automorphism group of $X$; in particular, $\Gamma$ is an arithmetic lattice. The proofs are based on the machinery of algebraic representations of ergodic systems recently developed by U. Bader and A. Furman. The implementation of that tool in the present context requires the geometric construction of a suitable ergodic $\Gamma$-space attached to the the building $X$, which we call the singular Cartan flow.
- Miklós Abért and Nikolay Nikolov, Rank gradient, cost of groups and the rank versus Heegaard genus problem, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 5, 1657–1677. MR 2966663, DOI https://doi.org/10.4171/JEMS/344
- Peter Abramenko and Kenneth S. Brown, Buildings, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008. Theory and applications. MR 2439729
- C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 36, L’Enseignement Mathématique, Geneva, 2000. With a foreword by Georges Skandalis and Appendix B by E. Germain. MR 1799683
- Uri Bader, Bruno Duchesne, and Jean Lécureux, Almost algebraic actions of algebraic groups and applications to algebraic representations, Groups Geom. Dyn. 11 (2017), no. 2, 705–738. MR 3668057, DOI https://doi.org/10.4171/GGD/413
- Uri Bader and Alex Furman, Algebraic representations of ergodic actions and super-rigidity, Preprint (2013).
- L. W. Baggett and Arlan Ramsay, A functional analytic proof of a selection lemma, Canadian J. Math. 32 (1980), no. 2, 441–448. MR 571938, DOI https://doi.org/10.4153/CJM-1980-035-x
- Sylvain Barré, Immeubles de Tits triangulaires exotiques, Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), no. 4, 575–603 (French, with English and French summaries). MR 1838139
- Sylvain Barré and Mikaël Pichot, Sur les immeubles triangulaires et leurs automorphismes, Geom. Dedicata 130 (2007), 71–91 (French, with French summary). MR 2365779, DOI https://doi.org/10.1007/s10711-007-9206-0
- Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834
- I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group $GL(n,F),$ where $F$ is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70 (Russian). MR 0425030
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012
- Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712
- Armand Borel and Jacques Tits, Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 499–571 (French). MR 316587, DOI https://doi.org/10.2307/1970833
- E. Breuillard and T. Gelander, A topological Tits alternative, Ann. of Math. (2) 166 (2007), no. 2, 427–474. MR 2373146, DOI https://doi.org/10.4007/annals.2007.166.427
- Marc Burger and Shahar Mozes, Groups acting on trees: from local to global structure, Inst. Hautes Études Sci. Publ. Math. 92 (2000), 113–150 (2001). MR 1839488
- Marc Burger and Shahar Mozes, Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math. 92 (2000), 151–194 (2001). MR 1839489
- Peter J. Cameron, Projective and polar spaces, QMW Maths Notes, vol. 13, Queen Mary and Westfield College, School of Mathematical Sciences, London, [1992]. MR 1153019
- Rachel Camina, Subgroups of the Nottingham group, J. Algebra 196 (1997), no. 1, 101–113. MR 1474165, DOI https://doi.org/10.1006/jabr.1997.7082
- Pierre-Emmanuel Caprace, A sixteen-relator presentation of an infinite hyperbolic Kazhdan group, Preprint, arXiv:1708.09772, 2017.
- Pierre-Emmanuel Caprace and Tom De Medts, Simple locally compact groups acting on trees and their germs of automorphisms, Transform. Groups 16 (2011), no. 2, 375–411. MR 2806497, DOI https://doi.org/10.1007/s00031-011-9131-z
- Pierre-Emmanuel Caprace and Tom De Medts, Trees, contraction groups, and Moufang sets, Duke Math. J. 162 (2013), no. 13, 2413–2449. MR 3127805, DOI https://doi.org/10.1215/00127094-2371640
- Pierre-Emmanuel Caprace and Nicolas Monod, Fixed points and amenability in non-positive curvature, Math. Ann. 356 (2013), no. 4, 1303–1337. MR 3072802, DOI https://doi.org/10.1007/s00208-012-0879-9
- Pierre-Emmanuel Caprace and Nicolas Monod, An indiscrete Bieberbach theorem: from amenable $\rm CAT(0)$ groups to Tits buildings, J. Éc. polytech. Math. 2 (2015), 333–383 (English, with English and French summaries). MR 3438730, DOI https://doi.org/10.5802/jep.26
- Pierre-Emmanuel Caprace, Colin D. Reid, and George A. Willis, Locally normal subgroups of totally disconnected groups. Part II: Compactly generated simple groups, Forum Math. Sigma 5 (2017), Paper No. e12, 89. MR 3659769, DOI https://doi.org/10.1017/fms.2017.8
- Pierre-Emmanuel Caprace and Thierry Stulemeijer, Totally disconnected locally compact groups with a linear open subgroup, Int. Math. Res. Not. IMRN 24 (2015), 13800–13829. MR 3436164, DOI https://doi.org/10.1093/imrn/rnv086
- Donald I. Cartwright, Harmonic functions on buildings of type $\widetilde A_n$, Random walks and discrete potential theory (Cortona, 1997) Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999, pp. 104–138. MR 1802428
- Donald I. Cartwright, Anna Maria Mantero, Tim Steger, and Anna Zappa, Groups acting simply transitively on the vertices of a building of type $\~A_2$. I, Geom. Dedicata 47 (1993), no. 2, 143–166. MR 1232965, DOI https://doi.org/10.1007/BF01266617
- Donald I. Cartwright and Wojciech Młotkowski, Harmonic analysis for groups acting on triangle buildings, J. Austral. Math. Soc. Ser. A 56 (1994), no. 3, 345–383. MR 1271526
- Ruth Charney and Alexander Lytchak, Metric characterizations of spherical and Euclidean buildings, Geom. Topol. 5 (2001), 521–550. MR 1833752, DOI https://doi.org/10.2140/gt.2001.5.521
- Brian Conrad, Reductive group schemes, Autour des schémas en groupes. Vol. I, Panor. Synthèses, vol. 42/43, Soc. Math. France, Paris, 2014, pp. 93–444 (English, with English and French summaries). MR 3362641
- Yves Cornulier, Aspects de la géométrie des groupes, 2014. Mémoire d’habilitation à diriger des recherches, Université Paris-Sud 11.
- Yves Coudène, Sur l’ergodicité du flot géodésique en courbure négative ou nulle, Enseign. Math. (2) 57 (2011), no. 1-2, 117–153 (French, with French summary). MR 2850587, DOI https://doi.org/10.4171/LEM/57-1-6
- P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Springer-Verlag, Berlin-New York, 1968. MR 0233275
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- Jan Essert, A geometric construction of panel-regular lattices for buildings of types $\~A_2$ and $\~C_2$, Algebr. Geom. Topol. 13 (2013), no. 3, 1531–1578. MR 3071135, DOI https://doi.org/10.2140/agt.2013.13.1531
- Benson Farb, Shahar Mozes, and Anne Thomas, Lattices in trees and higher dimensional subcomplexes. Preprint available at http://www.maths.usyd.edu.au/u/athomas/papers/ problems_thomas_Jan15.pdf.
- Paul Garrett, Buildings and classical groups, Chapman & Hall, London, 1997. MR 1449872
- Eli Glasner and Benjamin Weiss, Weak mixing properties for non-singular actions, Ergodic Theory Dynam. Systems 36 (2016), no. 7, 2203–2217. MR 3568977, DOI https://doi.org/10.1017/etds.2015.16
- Frederick P. Greenleaf, Ergodic theorems and the construction of summing sequences in amenable locally compact groups, Comm. Pure Appl. Math. 26 (1973), 29–46. MR 338260, DOI https://doi.org/10.1002/cpa.3160260103
- Matthias Grüninger, A new proof for the uniqueness of Lyons’ simple group, Innov. Incidence Geom. 11 (2010), 35–67. MR 2795056
- Eberhard Hopf, Fuchsian groups and ergodic theory, Trans. Amer. Math. Soc. 39 (1936), no. 2, 299–314. MR 1501848, DOI https://doi.org/10.1090/S0002-9947-1936-1501848-8
- Roger E. Howe and Calvin C. Moore, Asymptotic properties of unitary representations, J. Functional Analysis 32 (1979), no. 1, 72–96. MR 533220, DOI https://doi.org/10.1016/0022-1236%2879%2990078-8
- Nathan Jacobson, Basic algebra. II, W. H. Freeman and Co., San Francisco, Calif., 1980. MR 571884
- William M. Kantor, Some geometries that are almost buildings, European J. Combin. 2 (1981), no. 3, 239–247. MR 633119, DOI https://doi.org/10.1016/S0195-6698%2881%2980031-5
- William M. Kantor, Generalized polygons, SCABs and GABs, Buildings and the geometry of diagrams (Como, 1984) Lecture Notes in Math., vol. 1181, Springer, Berlin, 1986, pp. 79–158. MR 843390, DOI https://doi.org/10.1007/BFb0075513
- Norbert Knarr, Projectivities of generalized polygons, Ars Combin. 25 (1988), no. B, 265–275. Eleventh British Combinatorial Conference (London, 1987). MR 942482
- Peter Köhler, Thomas Meixner, and Michael Wester, The affine building of type $\~A_{2}$ over a local field of characteristic two, Arch. Math. (Basel) 42 (1984), no. 5, 400–407. MR 756691, DOI https://doi.org/10.1007/BF01190688
- Peter Köhler, Thomas Meixner, and Michael Wester, Triangle groups, Comm. Algebra 12 (1984), no. 13-14, 1595–1625. MR 743306, DOI https://doi.org/10.1080/00927878408823069
- Jean Lécureux, Amenability of actions on the boundary of a building, Int. Math. Res. Not. IMRN 17 (2010), 3265–3302. MR 2680274, DOI https://doi.org/10.1093/imrn/rnp241
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825
- Pierre Pansu, Formules de Matsushima, de Garland et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles, Bull. Soc. Math. France 126 (1998), no. 1, 107–139 (French, with English and French summaries). MR 1651383
- James Parkinson, Buildings and Hecke algebras, J. Algebra 297 (2006), no. 1, 1–49. MR 2206366, DOI https://doi.org/10.1016/j.jalgebra.2005.08.036
- James Parkinson, Spherical harmonic analysis on affine buildings, Math. Z. 253 (2006), no. 3, 571–606. MR 2221087, DOI https://doi.org/10.1007/s00209-005-0924-4
- V. P. Platonov, A certain problem for finitely generated groups, Dokl. Akad. Nauk BSSR 12 (1968), 492–494 (Russian). MR 0231897
- Gopal Prasad, Strong approximation for semi-simple groups over function fields, Ann. of Math. (2) 105 (1977), no. 3, 553–572. MR 444571, DOI https://doi.org/10.2307/1970924
- Nicolas Radu, A classification theorem for boundary 2-transitive automorphism groups of trees, Invent. Math. 209 (2017), no. 1, 1–60. MR 3660305, DOI https://doi.org/10.1007/s00222-016-0704-2
- Nicolas Radu, A lattice in a residually non-Desarguesian $\~A_2$-building, Bull. Lond. Math. Soc. 49 (2017), no. 2, 274–290. MR 3656296, DOI https://doi.org/10.1112/blms.12022
- Nicolas Radu, A homogeneous $\tilde {A}_2$-building with a non-discrete automorphism group is Bruhat–Tits, Geom. Dedicata (to appear) (2018).
- Guyan Robertson and Tim Steger, $C^*$-algebras arising from group actions on the boundary of a triangle building, Proc. London Math. Soc. (3) 72 (1996), no. 3, 613–637. MR 1376771, DOI https://doi.org/10.1112/plms/s3-72.3.613
- M. A. Ronan, Triangle geometries, J. Combin. Theory Ser. A 37 (1984), no. 3, 294–319. MR 769219, DOI https://doi.org/10.1016/0097-3165%2884%2990051-7
- M. A. Ronan, A construction of buildings with no rank $3$ residues of spherical type, Buildings and the geometry of diagrams (Como, 1984) Lecture Notes in Math., vol. 1181, Springer, Berlin, 1986, pp. 242–248. MR 843395, DOI https://doi.org/10.1007/BFb0075518
- Mark Ronan, Lectures on buildings, University of Chicago Press, Chicago, IL, 2009. Updated and revised. MR 2560094
- Christian Rosendal, Automatic continuity of group homomorphisms, Bull. Symbolic Logic 15 (2009), no. 2, 184–214. MR 2535429, DOI https://doi.org/10.2178/bsl/1243948486
- Adolf Schleiermacher, Reguläre Normalteiler in der Gruppe der Projektivitäten bei projektiven und affinen Ebenen, Math. Z. 114 (1970), 313–320 (German). MR 262921, DOI https://doi.org/10.1007/BF01112701
- James Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), no. 3, 377–385. MR 1501951, DOI https://doi.org/10.1090/S0002-9947-1938-1501951-4
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713
- Koen Struyve, Rigidity at infinity of trees and Euclidean buildings, Transform. Groups 21 (2016), no. 1, 265–273. MR 3459711, DOI https://doi.org/10.1007/s00031-015-9338-5
- Thierry Stulemeijer, Semi-simple algebraic groups from a topological group perspective, Ph.D. Thesis, 2017.
- J. Tits, A “theorem of Lie-Kolchin” for trees, Contributions to algebra (collection of papers dedicated to Ellis Kolchin), Academic Press, New York, 1977, pp. 377–388. MR 0578488
- Jacques Tits, Sur le groupe des automorphismes d’un arbre, Essays on topology and related topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 188–211 (French). MR 0299534
- Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. MR 0470099
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
- Jacques Tits, Théorie des groupes, Ann. Collège France 84 (1983/84), 85–96.
- Jacques Tits, Théorie des groupes, Ann. Collège France 85 (1984/85), 93–110.
- Jacques Tits, Buildings and group amalgamations, Proceedings of groups—St. Andrews 1985, London Math. Soc. Lecture Note Ser., vol. 121, Cambridge Univ. Press, Cambridge, 1986, pp. 110–127. MR 896503
- Jacques Tits, Spheres of radius $2$ in triangle buildings. I, Finite geometries, buildings, and related topics (Pingree Park, CO, 1988) Oxford Sci. Publ., Oxford Univ. Press, New York, 1990, pp. 17–28. MR 1072151
- H. Van Maldeghem, Nonclassical triangle buildings, Geom. Dedicata 24 (1987), no. 2, 123–206. MR 908973, DOI https://doi.org/10.1007/BF00150935
- T. N. Venkataramana, On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic, Invent. Math. 92 (1988), no. 2, 255–306. MR 936083, DOI https://doi.org/10.1007/BF01404454
- Richard M. Weiss, The structure of spherical buildings, Princeton University Press, Princeton, NJ, 2003. MR 2034361
- Richard M. Weiss, The structure of affine buildings, Annals of Mathematics Studies, vol. 168, Princeton University Press, Princeton, NJ, 2009. MR 2468338
- Stefan Witzel, On panel-regular $\tilde {A}_2$ lattices, Geom. Dedicata 191 (2017), 85–135. MR 3719076, DOI https://doi.org/10.1007/s10711-017-0247-8
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 20E42, 20F65, 22E40, 51E24, 22D40, 20E08, 22F50, 20C99
Retrieve articles in all journals with MSC (2010): 20E42, 20F65, 22E40, 51E24, 22D40, 20E08, 22F50, 20C99
Additional Information
Uri Bader
Affiliation:
Department of Mathematics, Weizmann Institute of Science, 7610001 Rehovot, Israel
MR Author ID:
707409
Email:
bader@weizmann.ac.il
Pierre-Emmanuel Caprace
Affiliation:
UCLouvain, IRMP, Chemin du Cyclotron 2, Box L7.01.02, 1348 Louvain-la-Neuve, Belgium
MR Author ID:
752356
Email:
pierre-emmanuel.caprace@uclouvain.be
Jean Lécureux
Affiliation:
Département de Mathématiques, Bâtiment 307, Faculté des Sciences d’Orsay, Université Paris-Sud 11, F-91405 Orsay, France
Email:
jean.lecureux@math.u-psud.fr
Received by editor(s):
October 7, 2016
Received by editor(s) in revised form:
July 2, 2018, August 20, 2018, and September 18, 2018
Published electronically:
November 27, 2018
Additional Notes:
The first author acknowledges the support of ERC grant #306706.
The second author ackowledges the support of F.R.S.-FNRS and of ERC grant #278469.
The third author was supported in part by ANR grant ANR-14-CE25-0004 GAMME and ANR-16-CE40-0022-01 AGIRA
Article copyright:
© Copyright 2018
American Mathematical Society