On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow
HTML articles powered by AMS MathViewer
- by Uri Bader, Pierre-Emmanuel Caprace and Jean Lécureux;
- J. Amer. Math. Soc. 32 (2019), 491-562
- DOI: https://doi.org/10.1090/jams/914
- Published electronically: November 27, 2018
- HTML | PDF | Request permission
Abstract:
Let $X$ be a locally finite irreducible affine building of dimension $\geq 2$, and let $\Gamma \leq \operatorname {Aut}(X)$ be a discrete group acting cocompactly. The goal of this paper is to address the following question: When is $\Gamma$ linear? More generally, when does $\Gamma$ admit a finite-dimensional representation with infinite image over a commutative unital ring? If $X$ is the Bruhat–Tits building of a simple algebraic group over a local field and if $\Gamma$ is an arithmetic lattice, then $\Gamma$ is clearly linear. We prove that if $X$ is of type $\widetilde {A}_2$, then the converse holds. In particular, cocompact lattices in exotic $\widetilde {A}_2$-buildings are nonlinear. As an application, we obtain the first infinite family of lattices in exotic $\widetilde {A}_2$-buildings of arbitrarily large thickness, providing a partial answer to a question of W. Kantor from 1986. We also show that if $X$ is Bruhat–Tits of arbitrary type, then the linearity of $\Gamma$ implies that $\Gamma$ is virtually contained in the linear part of the automorphism group of $X$; in particular, $\Gamma$ is an arithmetic lattice. The proofs are based on the machinery of algebraic representations of ergodic systems recently developed by U. Bader and A. Furman. The implementation of that tool in the present context requires the geometric construction of a suitable ergodic $\Gamma$-space attached to the the building $X$, which we call the singular Cartan flow.References
- Miklós Abért and Nikolay Nikolov, Rank gradient, cost of groups and the rank versus Heegaard genus problem, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 5, 1657–1677. MR 2966663, DOI 10.4171/JEMS/344
- Peter Abramenko and Kenneth S. Brown, Buildings, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008. Theory and applications. MR 2439729, DOI 10.1007/978-0-387-78835-7
- C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 36, L’Enseignement Mathématique, Geneva, 2000. With a foreword by Georges Skandalis and Appendix B by E. Germain. MR 1799683
- Uri Bader, Bruno Duchesne, and Jean Lécureux, Almost algebraic actions of algebraic groups and applications to algebraic representations, Groups Geom. Dyn. 11 (2017), no. 2, 705–738. MR 3668057, DOI 10.4171/GGD/413
- Uri Bader and Alex Furman, Algebraic representations of ergodic actions and super-rigidity, Preprint (2013).
- L. W. Baggett and Arlan Ramsay, A functional analytic proof of a selection lemma, Canadian J. Math. 32 (1980), no. 2, 441–448. MR 571938, DOI 10.4153/CJM-1980-035-x
- Sylvain Barré, Immeubles de Tits triangulaires exotiques, Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), no. 4, 575–603 (French, with English and French summaries). MR 1838139, DOI 10.5802/afst.973
- Sylvain Barré and Mikaël Pichot, Sur les immeubles triangulaires et leurs automorphismes, Geom. Dedicata 130 (2007), 71–91 (French, with French summary). MR 2365779, DOI 10.1007/s10711-007-9206-0
- Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834, DOI 10.1017/CBO9780511542749
- I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group $GL(n,F),$ where $F$ is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70 (Russian). MR 425030
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712, DOI 10.1007/BF02684375
- Armand Borel and Jacques Tits, Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 499–571 (French). MR 316587, DOI 10.2307/1970833
- E. Breuillard and T. Gelander, A topological Tits alternative, Ann. of Math. (2) 166 (2007), no. 2, 427–474. MR 2373146, DOI 10.4007/annals.2007.166.427
- Marc Burger and Shahar Mozes, Groups acting on trees: from local to global structure, Inst. Hautes Études Sci. Publ. Math. 92 (2000), 113–150 (2001). MR 1839488, DOI 10.1007/BF02698915
- Marc Burger and Shahar Mozes, Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math. 92 (2000), 151–194 (2001). MR 1839489, DOI 10.1007/BF02698916
- Peter J. Cameron, Projective and polar spaces, QMW Maths Notes, vol. 13, Queen Mary and Westfield College, School of Mathematical Sciences, London, [1992]. MR 1153019
- Rachel Camina, Subgroups of the Nottingham group, J. Algebra 196 (1997), no. 1, 101–113. MR 1474165, DOI 10.1006/jabr.1997.7082
- Pierre-Emmanuel Caprace, A sixteen-relator presentation of an infinite hyperbolic Kazhdan group, Preprint, arXiv:1708.09772, 2017.
- Pierre-Emmanuel Caprace and Tom De Medts, Simple locally compact groups acting on trees and their germs of automorphisms, Transform. Groups 16 (2011), no. 2, 375–411. MR 2806497, DOI 10.1007/s00031-011-9131-z
- Pierre-Emmanuel Caprace and Tom De Medts, Trees, contraction groups, and Moufang sets, Duke Math. J. 162 (2013), no. 13, 2413–2449. MR 3127805, DOI 10.1215/00127094-2371640
- Pierre-Emmanuel Caprace and Nicolas Monod, Fixed points and amenability in non-positive curvature, Math. Ann. 356 (2013), no. 4, 1303–1337. MR 3072802, DOI 10.1007/s00208-012-0879-9
- Pierre-Emmanuel Caprace and Nicolas Monod, An indiscrete Bieberbach theorem: from amenable $\rm CAT(0)$ groups to Tits buildings, J. Éc. polytech. Math. 2 (2015), 333–383 (English, with English and French summaries). MR 3438730, DOI 10.5802/jep.26
- Pierre-Emmanuel Caprace, Colin D. Reid, and George A. Willis, Locally normal subgroups of totally disconnected groups. Part II: Compactly generated simple groups, Forum Math. Sigma 5 (2017), Paper No. e12, 89. MR 3659769, DOI 10.1017/fms.2017.8
- Pierre-Emmanuel Caprace and Thierry Stulemeijer, Totally disconnected locally compact groups with a linear open subgroup, Int. Math. Res. Not. IMRN 24 (2015), 13800–13829. MR 3436164, DOI 10.1093/imrn/rnv086
- Donald I. Cartwright, Harmonic functions on buildings of type $\widetilde A_n$, Random walks and discrete potential theory (Cortona, 1997) Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999, pp. 104–138. MR 1802428
- Donald I. Cartwright, Anna Maria Mantero, Tim Steger, and Anna Zappa, Groups acting simply transitively on the vertices of a building of type $\~A_2$. I, Geom. Dedicata 47 (1993), no. 2, 143–166. MR 1232965, DOI 10.1007/BF01266617
- Donald I. Cartwright and Wojciech Młotkowski, Harmonic analysis for groups acting on triangle buildings, J. Austral. Math. Soc. Ser. A 56 (1994), no. 3, 345–383. MR 1271526, DOI 10.1017/S1446788700035540
- Ruth Charney and Alexander Lytchak, Metric characterizations of spherical and Euclidean buildings, Geom. Topol. 5 (2001), 521–550. MR 1833752, DOI 10.2140/gt.2001.5.521
- Brian Conrad, Reductive group schemes, Autour des schémas en groupes. Vol. I, Panor. Synthèses, vol. 42/43, Soc. Math. France, Paris, 2014, pp. 93–444 (English, with English and French summaries). MR 3362641
- Yves Cornulier, Aspects de la géométrie des groupes, 2014. Mémoire d’habilitation à diriger des recherches, Université Paris-Sud 11.
- Yves Coudène, Sur l’ergodicité du flot géodésique en courbure négative ou nulle, Enseign. Math. (2) 57 (2011), no. 1-2, 117–153 (French, with French summary). MR 2850587, DOI 10.4171/LEM/57-1-6
- P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 44, Springer-Verlag, Berlin-New York, 1968. MR 233275, DOI 10.1007/978-3-642-62012-6
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Jan Essert, A geometric construction of panel-regular lattices for buildings of types $\~A_2$ and $\~C_2$, Algebr. Geom. Topol. 13 (2013), no. 3, 1531–1578. MR 3071135, DOI 10.2140/agt.2013.13.1531
- Benson Farb, Shahar Mozes, and Anne Thomas, Lattices in trees and higher dimensional subcomplexes. Preprint available at http://www.maths.usyd.edu.au/u/athomas/papers/ problems_thomas_Jan15.pdf.
- Paul Garrett, Buildings and classical groups, Chapman & Hall, London, 1997. MR 1449872, DOI 10.1007/978-94-011-5340-9
- Eli Glasner and Benjamin Weiss, Weak mixing properties for non-singular actions, Ergodic Theory Dynam. Systems 36 (2016), no. 7, 2203–2217. MR 3568977, DOI 10.1017/etds.2015.16
- Frederick P. Greenleaf, Ergodic theorems and the construction of summing sequences in amenable locally compact groups, Comm. Pure Appl. Math. 26 (1973), 29–46. MR 338260, DOI 10.1002/cpa.3160260103
- Matthias Grüninger, A new proof for the uniqueness of Lyons’ simple group, Innov. Incidence Geom. 11 (2010), 35–67. MR 2795056, DOI 10.2140/iig.2010.11.35
- Eberhard Hopf, Fuchsian groups and ergodic theory, Trans. Amer. Math. Soc. 39 (1936), no. 2, 299–314. MR 1501848, DOI 10.1090/S0002-9947-1936-1501848-8
- Roger E. Howe and Calvin C. Moore, Asymptotic properties of unitary representations, J. Functional Analysis 32 (1979), no. 1, 72–96. MR 533220, DOI 10.1016/0022-1236(79)90078-8
- Nathan Jacobson, Basic algebra. II, W. H. Freeman and Co., San Francisco, CA, 1980. MR 571884
- William M. Kantor, Some geometries that are almost buildings, European J. Combin. 2 (1981), no. 3, 239–247. MR 633119, DOI 10.1016/S0195-6698(81)80031-5
- William M. Kantor, Generalized polygons, SCABs and GABs, Buildings and the geometry of diagrams (Como, 1984) Lecture Notes in Math., vol. 1181, Springer, Berlin, 1986, pp. 79–158. MR 843390, DOI 10.1007/BFb0075513
- Norbert Knarr, Projectivities of generalized polygons, Ars Combin. 25 (1988), no. B, 265–275. Eleventh British Combinatorial Conference (London, 1987). MR 942482
- Peter Köhler, Thomas Meixner, and Michael Wester, The affine building of type $\~A_{2}$ over a local field of characteristic two, Arch. Math. (Basel) 42 (1984), no. 5, 400–407. MR 756691, DOI 10.1007/BF01190688
- Peter Köhler, Thomas Meixner, and Michael Wester, Triangle groups, Comm. Algebra 12 (1984), no. 13-14, 1595–1625. MR 743306, DOI 10.1080/00927878408823069
- Jean Lécureux, Amenability of actions on the boundary of a building, Int. Math. Res. Not. IMRN 17 (2010), 3265–3302. MR 2680274, DOI 10.1093/imrn/rnp241
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Pierre Pansu, Formules de Matsushima, de Garland et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles, Bull. Soc. Math. France 126 (1998), no. 1, 107–139 (French, with English and French summaries). MR 1651383, DOI 10.24033/bsmf.2322
- James Parkinson, Buildings and Hecke algebras, J. Algebra 297 (2006), no. 1, 1–49. MR 2206366, DOI 10.1016/j.jalgebra.2005.08.036
- James Parkinson, Spherical harmonic analysis on affine buildings, Math. Z. 253 (2006), no. 3, 571–606. MR 2221087, DOI 10.1007/s00209-005-0924-4
- V. P. Platonov, A certain problem for finitely generated groups, Dokl. Akad. Nauk BSSR 12 (1968), 492–494 (Russian). MR 231897
- Gopal Prasad, Strong approximation for semi-simple groups over function fields, Ann. of Math. (2) 105 (1977), no. 3, 553–572. MR 444571, DOI 10.2307/1970924
- Nicolas Radu, A classification theorem for boundary 2-transitive automorphism groups of trees, Invent. Math. 209 (2017), no. 1, 1–60. MR 3660305, DOI 10.1007/s00222-016-0704-2
- Nicolas Radu, A lattice in a residually non-Desarguesian $\~A_2$-building, Bull. Lond. Math. Soc. 49 (2017), no. 2, 274–290. MR 3656296, DOI 10.1112/blms.12022
- Nicolas Radu, A homogeneous $\tilde {A}_2$-building with a non-discrete automorphism group is Bruhat–Tits, Geom. Dedicata (to appear) (2018).
- Guyan Robertson and Tim Steger, $C^*$-algebras arising from group actions on the boundary of a triangle building, Proc. London Math. Soc. (3) 72 (1996), no. 3, 613–637. MR 1376771, DOI 10.1112/plms/s3-72.3.613
- M. A. Ronan, Triangle geometries, J. Combin. Theory Ser. A 37 (1984), no. 3, 294–319. MR 769219, DOI 10.1016/0097-3165(84)90051-7
- M. A. Ronan, A construction of buildings with no rank $3$ residues of spherical type, Buildings and the geometry of diagrams (Como, 1984) Lecture Notes in Math., vol. 1181, Springer, Berlin, 1986, pp. 242–248. MR 843395, DOI 10.1007/BFb0075518
- Mark Ronan, Lectures on buildings, University of Chicago Press, Chicago, IL, 2009. Updated and revised. MR 2560094
- Christian Rosendal, Automatic continuity of group homomorphisms, Bull. Symbolic Logic 15 (2009), no. 2, 184–214. MR 2535429, DOI 10.2178/bsl/1243948486
- Adolf Schleiermacher, Reguläre Normalteiler in der Gruppe der Projektivitäten bei projektiven und affinen Ebenen, Math. Z. 114 (1970), 313–320 (German). MR 262921, DOI 10.1007/BF01112701
- James Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), no. 3, 377–385. MR 1501951, DOI 10.1090/S0002-9947-1938-1501951-4
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
- Koen Struyve, Rigidity at infinity of trees and Euclidean buildings, Transform. Groups 21 (2016), no. 1, 265–273. MR 3459711, DOI 10.1007/s00031-015-9338-5
- Thierry Stulemeijer, Semi-simple algebraic groups from a topological group perspective, Ph.D. Thesis, 2017.
- J. Tits, A “theorem of Lie-Kolchin” for trees, Contributions to algebra (collection of papers dedicated to Ellis Kolchin), Academic Press, New York-London, 1977, pp. 377–388. MR 578488
- Jacques Tits, Sur le groupe des automorphismes d’un arbre, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York-Berlin, 1970, pp. 188–211 (French). MR 299534
- Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. MR 470099
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 29–69. MR 546588
- Jacques Tits, Théorie des groupes, Ann. Collège France 84 (1983/84), 85–96.
- Jacques Tits, Théorie des groupes, Ann. Collège France 85 (1984/85), 93–110.
- Jacques Tits, Buildings and group amalgamations, Proceedings of groups—St. Andrews 1985, London Math. Soc. Lecture Note Ser., vol. 121, Cambridge Univ. Press, Cambridge, 1986, pp. 110–127. MR 896503
- Jacques Tits, Spheres of radius $2$ in triangle buildings. I, Finite geometries, buildings, and related topics (Pingree Park, CO, 1988) Oxford Sci. Publ., Oxford Univ. Press, New York, 1990, pp. 17–28. MR 1072151
- H. Van Maldeghem, Nonclassical triangle buildings, Geom. Dedicata 24 (1987), no. 2, 123–206. MR 908973, DOI 10.1007/BF00150935
- T. N. Venkataramana, On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic, Invent. Math. 92 (1988), no. 2, 255–306. MR 936083, DOI 10.1007/BF01404454
- Richard M. Weiss, The structure of spherical buildings, Princeton University Press, Princeton, NJ, 2003. MR 2034361
- Richard M. Weiss, The structure of affine buildings, Annals of Mathematics Studies, vol. 168, Princeton University Press, Princeton, NJ, 2009. MR 2468338
- Stefan Witzel, On panel-regular $\tilde {A}_2$ lattices, Geom. Dedicata 191 (2017), 85–135. MR 3719076, DOI 10.1007/s10711-017-0247-8
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Uri Bader
- Affiliation: Department of Mathematics, Weizmann Institute of Science, 7610001 Rehovot, Israel
- MR Author ID: 707409
- Email: bader@weizmann.ac.il
- Pierre-Emmanuel Caprace
- Affiliation: UCLouvain, IRMP, Chemin du Cyclotron 2, Box L7.01.02, 1348 Louvain-la-Neuve, Belgium
- MR Author ID: 752356
- Email: pierre-emmanuel.caprace@uclouvain.be
- Jean Lécureux
- Affiliation: Département de Mathématiques, Bâtiment 307, Faculté des Sciences d’Orsay, Université Paris-Sud 11, F-91405 Orsay, France
- Email: jean.lecureux@math.u-psud.fr
- Received by editor(s): October 7, 2016
- Received by editor(s) in revised form: July 2, 2018, August 20, 2018, and September 18, 2018
- Published electronically: November 27, 2018
- Additional Notes: The first author acknowledges the support of ERC grant #306706.
The second author ackowledges the support of F.R.S.-FNRS and of ERC grant #278469.
The third author was supported in part by ANR grant ANR-14-CE25-0004 GAMME and ANR-16-CE40-0022-01 AGIRA - © Copyright 2018 American Mathematical Society
- Journal: J. Amer. Math. Soc. 32 (2019), 491-562
- MSC (2010): Primary 20E42, 20F65, 22E40, 51E24; Secondary 22D40, 20E08, 22F50, 20C99
- DOI: https://doi.org/10.1090/jams/914
- MathSciNet review: 3904159