Absolute continuity of Bernoulli convolutions for algebraic parameters
HTML articles powered by AMS MathViewer
- by Péter P. Varjú;
- J. Amer. Math. Soc. 32 (2019), 351-397
- DOI: https://doi.org/10.1090/jams/916
- Published electronically: January 22, 2019
- PDF | Request permission
Abstract:
We prove that Bernoulli convolutions $\mu _\lambda$ are absolutely continuous provided the parameter $\lambda$ is an algebraic number sufficiently close to $1$ depending on the Mahler measure of $\lambda$.References
- Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774, DOI 10.1017/CBO9780511542879
- Jean Bourgain, The discretized sum-product and projection theorems, J. Anal. Math. 112 (2010), 193–236. MR 2763000, DOI 10.1007/s11854-010-0028-x
- E. Breuillard and P. P. Varjú, On the dimension of Bernoulli convolutions, to appear in Ann. Probab.; arXiv:1610.09154v2.
- Emmanuel Breuillard and Péter P. Varjú, Entropy of Bernoulli convolutions and uniform exponential growth for linear groups, to appear in J. Anal. Math.; arXiv:1510.04043v3.
- Thomas M. Cover and Joy A. Thomas, Elements of information theory, 2nd ed., Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2006. MR 2239987
- E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), no. 4, 391–401. MR 543210, DOI 10.4064/aa-34-4-391-401
- Paul Erdös, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974–976. MR 311, DOI 10.2307/2371641
- Paul Erdös, On the smoothness properties of a family of Bernoulli convolutions, Amer. J. Math. 62 (1940), 180–186. MR 858, DOI 10.2307/2371446
- Kenneth Falconer, Fractal geometry, 3rd ed., John Wiley & Sons, Ltd., Chichester, 2014. Mathematical foundations and applications. MR 3236784
- De-Jun Feng and Huyi Hu, Dimension theory of iterated function systems, Comm. Pure Appl. Math. 62 (2009), no. 11, 1435–1500. MR 2560042, DOI 10.1002/cpa.20276
- Adriano M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409–432. MR 137961, DOI 10.1090/S0002-9947-1962-0137961-5
- Adriano M. Garsia, Entropy and singularity of infinite convolutions, Pacific J. Math. 13 (1963), 1159–1169. MR 156945, DOI 10.2140/pjm.1963.13.1159
- Michael Hochman, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2) 180 (2014), no. 2, 773–822. MR 3224722, DOI 10.4007/annals.2014.180.2.7
- Børge Jessen and Aurel Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), no. 1, 48–88. MR 1501802, DOI 10.1090/S0002-9947-1935-1501802-5
- V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983), no. 3, 457–490. MR 704539, DOI 10.1214/aop/1176993497
- Ioannis Kontoyiannis and Mokshay Madiman, Sumset and inverse sumset inequalities for differential entropy and mutual information, IEEE Trans. Inform. Theory 60 (2014), no. 8, 4503–4514. MR 3245338, DOI 10.1109/TIT.2014.2322861
- Elon Lindenstrauss and Péter P. Varjú, Work in progress, 2018.
- Mokshay Madiman, On the entropy of sums, in Information Theory Workshop, 2008, IEEE, 2008, pp. 303–307.
- Yuval Peres, Wilhelm Schlag, and Boris Solomyak, Sixty years of Bernoulli convolutions, Fractal geometry and stochastics, II (Greifswald/Koserow, 1998) Progr. Probab., vol. 46, Birkhäuser, Basel, 2000, pp. 39–65. MR 1785620
- Pablo Shmerkin, On the exceptional set for absolute continuity of Bernoulli convolutions, Geom. Funct. Anal. 24 (2014), no. 3, 946–958. MR 3213835, DOI 10.1007/s00039-014-0285-4
- Chris Smyth, The Mahler measure of algebraic numbers: a survey, Number theory and polynomials, London Math. Soc. Lecture Note Ser., vol. 352, Cambridge Univ. Press, Cambridge, 2008, pp. 322–349. MR 2428530, DOI 10.1017/CBO9780511721274.021
- Boris Solomyak, On the random series $\sum \pm \lambda ^n$ (an Erdős problem), Ann. of Math. (2) 142 (1995), no. 3, 611–625. MR 1356783, DOI 10.2307/2118556
- Boris Solomyak, Notes on Bernoulli convolutions, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 207–230. MR 2112107, DOI 10.1090/pspum/072.1/2112107
- Terence Tao, Sumset and inverse sumset theory for Shannon entropy, Combin. Probab. Comput. 19 (2010), no. 4, 603–639. MR 2647496, DOI 10.1017/S0963548309990642
- Péter P. Varjú, Recent progress on Bernoulli convolutions, European Congress of Mathematics, Berlin, July 18–22, 2016, Eur. Math. Soc., pp. 847–868.\nopunct
- Zhiren Wang, Quantitative density under higher rank abelian algebraic toral actions, Int. Math. Res. Not. IMRN 16 (2011), 3744–3821. MR 2824843, DOI 10.1093/imrn/rnq222
Bibliographic Information
- Péter P. Varjú
- Affiliation: Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Email: pv270@dpmms.cam.ac.uk
- Received by editor(s): August 16, 2016
- Received by editor(s) in revised form: May 15, 2017, and June 27, 2018
- Published electronically: January 22, 2019
- Additional Notes: The author gratefully acknowledges the support of the Royal Society.
- © Copyright 2019 American Mathematical Society
- Journal: J. Amer. Math. Soc. 32 (2019), 351-397
- MSC (2010): Primary 28A80, 42A85
- DOI: https://doi.org/10.1090/jams/916
- MathSciNet review: 3904156