Existence and uniqueness for anisotropic and crystalline mean curvature flows
HTML articles powered by AMS MathViewer
- by Antonin Chambolle, Massimiliano Morini, Matteo Novaga and Marcello Ponsiglione
- J. Amer. Math. Soc. 32 (2019), 779-824
- DOI: https://doi.org/10.1090/jams/919
- Published electronically: April 11, 2019
- HTML | PDF | Request permission
Abstract:
An existence and uniqueness result, up to fattening, for crystalline mean curvature flows with forcing and arbitrary (convex) mobilities, is proven. This is achieved by introducing a new notion of solution to the corresponding level set formulation. Such solutions satisfy a comparison principle and stability properties with respect to the approximation by suitably regularized problems. The results are valid in any dimension and for arbitrary, possibly unbounded, initial closed sets. The approach accounts for the possible presence of a time-dependent bounded forcing term, with spatial Lipschitz continuity. As a result of our analysis, we deduce the convergence of a minimizing movement scheme proposed by Almgren, Taylor, and Wang (1993) to a unique (up to fattening) “flat flow” in the case of general, including crystalline, anisotropies, solving a long-standing open question.References
- L. Almeida, A. Chambolle, and M. Novaga, Mean curvature flow with obstacles, Ann. Inst. H. Poincaré C Anal. Non Linéaire 29 (2012), no. 5, 667–681. MR 2971026, DOI 10.1016/j.anihpc.2012.03.002
- Fred Almgren and Jean E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom. 42 (1995), no. 1, 1–22. MR 1350693
- Fred Almgren, Jean E. Taylor, and Lihe Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim. 31 (1993), no. 2, 387–438. MR 1205983, DOI 10.1137/0331020
- L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, Calculus of variations and partial differential equations (Pisa, 1996) Springer, Berlin, 2000, pp. 5–93. MR 1757696
- L. Ambrosio and G. Dal Maso, A general chain rule for distributional derivatives, Proc. Amer. Math. Soc. 108 (1990), no. 3, 691–702. MR 969514, DOI 10.1090/S0002-9939-1990-0969514-3
- Luigi Ambrosio and Halil Mete Soner, Level set approach to mean curvature flow in arbitrary codimension, J. Differential Geom. 43 (1996), no. 4, 693–737. MR 1412682
- Sigurd Angenent and Morton E. Gurtin, Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface, Arch. Rational Mech. Anal. 108 (1989), no. 4, 323–391. MR 1013461, DOI 10.1007/BF01041068
- S. Angenent, T. Ilmanen, and D. L. Chopp, A computed example of nonuniqueness of mean curvature flow in $\mathbf R^3$, Comm. Partial Differential Equations 20 (1995), no. 11-12, 1937–1958. MR 1361726, DOI 10.1080/03605309508821158
- Gabriele Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 (1983), 293–318 (1984). MR 750538, DOI 10.1007/BF01781073
- Guy Barles and Christine Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM J. Numer. Anal. 32 (1995), no. 2, 484–500. MR 1324298, DOI 10.1137/0732020
- G. Barles, H. M. Soner, and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim. 31 (1993), no. 2, 439–469. MR 1205984, DOI 10.1137/0331021
- Guy Barles and Panagiotis E. Souganidis, A new approach to front propagation problems: theory and applications, Arch. Rational Mech. Anal. 141 (1998), no. 3, 237–296. MR 1617291, DOI 10.1007/s002050050077
- Giovanni Bellettini, Vicent Caselles, Antonin Chambolle, and Matteo Novaga, Crystalline mean curvature flow of convex sets, Arch. Ration. Mech. Anal. 179 (2006), no. 1, 109–152. MR 2208291, DOI 10.1007/s00205-005-0387-0
- Giovanni Bellettini, Vicent Caselles, Antonin Chambolle, and Matteo Novaga, The volume preserving crystalline mean curvature flow of convex sets in $\Bbb R^N$, J. Math. Pures Appl. (9) 92 (2009), no. 5, 499–527. MR 2558422, DOI 10.1016/j.matpur.2009.05.016
- G. Bellettini and M. Novaga, Approximation and comparison for nonsmooth anisotropic motion by mean curvature in $\textbf {R}^N$, Math. Models Methods Appl. Sci. 10 (2000), no. 1, 1–10. MR 1749692, DOI 10.1142/S0218202500000021
- G. Bellettini, M. Novaga, and M. Paolini, On a crystalline variational problem. I. First variation and global $L^\infty$ regularity, Arch. Ration. Mech. Anal. 157 (2001), no. 3, 165–191. MR 1826964, DOI 10.1007/s002050010127
- J. W. Cahn and D. W. Hoffmann, A vector thermodynamics for anisotropic surfaces. II. Curved and faceted surfaces, Acta Metallurgica, 22 (1974), no. 5, 1205–1214.
- Vicent Caselles and Antonin Chambolle, Anisotropic curvature-driven flow of convex sets, Nonlinear Anal. 65 (2006), no. 8, 1547–1577. MR 2248685, DOI 10.1016/j.na.2005.10.029
- Antonin Chambolle, An algorithm for mean curvature motion, Interfaces Free Bound. 6 (2004), no. 2, 195–218. MR 2079603, DOI 10.4171/IFB/97
- Antonin Chambolle, Massimiliano Morini, Matteo Novaga, and Marcello Ponsiglione, Generalized crystalline evolutions as limits of flows with smooth anisotropies, Anal. PDE 12 (2019), no. 3, 789–813. MR 3864210, DOI 10.2140/apde.2019.12.789
- Antonin Chambolle, Massimiliano Morini, and Marcello Ponsiglione, Nonlocal curvature flows, Arch. Ration. Mech. Anal. 218 (2015), no. 3, 1263–1329. MR 3401008, DOI 10.1007/s00205-015-0880-z
- Antonin Chambolle, Massimiliano Morini, and Marcello Ponsiglione, Existence and uniqueness for a crystalline mean curvature flow, Comm. Pure Appl. Math. 70 (2017), no. 6, 1084–1114. MR 3639320, DOI 10.1002/cpa.21668
- Antonin Chambolle and Matteo Novaga, Approximation of the anisotropic mean curvature flow, Math. Models Methods Appl. Sci. 17 (2007), no. 6, 833–844. MR 2334546, DOI 10.1142/S0218202507002121
- A. Chambolle and M. Novaga, Implicit time discretization of the mean curvature flow with a discontinuous forcing term, Interfaces Free Bound. 10 (2008), no. 3, 283–300. MR 2453133, DOI 10.4171/ifb/190
- Antonin Chambolle and Matteo Novaga, Existence and uniqueness for planar anisotropic and crystalline curvature flow, Variational methods for evolving objects, Adv. Stud. Pure Math., vol. 67, Math. Soc. Japan, [Tokyo], 2015, pp. 87–113. MR 3587448, DOI 10.2969/aspm/06710087
- Yun Gang Chen, Yoshikazu Giga, and Shun’ichi Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. 33 (1991), no. 3, 749–786. MR 1100211
- Klaus Ecker and Gerhard Huisken, Mean curvature evolution of entire graphs, Ann. of Math. (2) 130 (1989), no. 3, 453–471. MR 1025164, DOI 10.2307/1971452
- L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992), no. 9, 1097–1123. MR 1177477, DOI 10.1002/cpa.3160450903
- L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom. 33 (1991), no. 3, 635–681. MR 1100206, DOI 10.4310/jdg/1214446559
- L. C. Evans and J. Spruck, Motion of level sets by mean curvature. II, Trans. Amer. Math. Soc. 330 (1992), no. 1, 321–332. MR 1068927, DOI 10.1090/S0002-9947-1992-1068927-8
- L. C. Evans and J. Spruck, Motion of level sets by mean curvature. III, J. Geom. Anal. 2 (1992), no. 2, 121–150. MR 1151756, DOI 10.1007/BF02921385
- Irene Fonseca and Stefan Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), no. 1-2, 125–136. MR 1130601, DOI 10.1017/S0308210500028365
- Mi-Ho Giga and Yoshikazu Giga, Evolving graphs by singular weighted curvature, Arch. Rational Mech. Anal. 141 (1998), no. 2, 117–198. MR 1615520, DOI 10.1007/s002050050075
- Mi-Ho Giga and Yoshikazu Giga, Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal. 159 (2001), no. 4, 295–333. MR 1860050, DOI 10.1007/s002050100154
- Mi-Ho Giga, Yoshikazu Giga, and Norbert Požár, Periodic total variation flow of non-divergence type in $\Bbb {R}^n$, J. Math. Pures Appl. (9) 102 (2014), no. 1, 203–233 (English, with English and French summaries). MR 3212254, DOI 10.1016/j.matpur.2013.11.007
- Y. Giga, S. Goto, H. Ishii, and M.-H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J. 40 (1991), no. 2, 443–470. MR 1119185, DOI 10.1512/iumj.1991.40.40023
- Yoshikazu Giga, Surface evolution equations, Monographs in Mathematics, vol. 99, Birkhäuser Verlag, Basel, 2006. A level set approach. MR 2238463
- Yoshikazu Giga and Morton E. Gurtin, A comparison theorem for crystalline evolution in the plane, Quart. Appl. Math. 54 (1996), no. 4, 727–737. MR 1417236, DOI 10.1090/qam/1417236
- Yoshikazu Giga, Morton E. Gurtin, and José Matias, On the dynamics of crystalline motions, Japan J. Indust. Appl. Math. 15 (1998), no. 1, 7–50. MR 1610305, DOI 10.1007/BF03167395
- Yoshikazu Giga, Takeshi Ohtsuka, and Reiner Schätzle, On a uniform approximation of motion by anisotropic curvature by the Allen-Cahn equations, Interfaces Free Bound. 8 (2006), no. 3, 317–348. MR 2273232, DOI 10.4171/IFB/146
- Yoshikazu Giga and Norbert Požár, A level set crystalline mean curvature flow of surfaces, Adv. Differential Equations 21 (2016), no. 7-8, 631–698. MR 3493931
- Yoshikazu Giga and Norbert Požár, Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to crystalline mean curvature flow, Comm. Pure Appl. Math. 71 (2018), no. 7, 1461–1491. MR 3812077, DOI 10.1002/cpa.21752
- Morton E. Gurtin, Thermomechanics of evolving phase boundaries in the plane, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. MR 1402243
- Stephan Luckhaus and Thomas Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations 3 (1995), no. 2, 253–271. MR 1386964, DOI 10.1007/BF01205007
- Stanley Osher and James A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), no. 1, 12–49. MR 965860, DOI 10.1016/0021-9991(88)90002-2
- Halil Mete Soner, Motion of a set by the curvature of its boundary, J. Differential Equations 101 (1993), no. 2, 313–372. MR 1204331, DOI 10.1006/jdeq.1993.1015
- J. E. Taylor, Mean curvature and weighted mean curvature, Acta Metallurgica et Materialia 40 (1992), no. 7, 1475–1485.
- J. E. Taylor, J. W. Cahn, and C. A. Handwerker, Geometric models of crystal growth, Acta Metallurgica et Materialia 40 (1992), no. 7, 1443–1474.
- Jean E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), no. 4, 568–588. MR 493671, DOI 10.1090/S0002-9904-1978-14499-1
- Jean E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 417–438. MR 1216599, DOI 10.1090/pspum/054.1/1216599
Bibliographic Information
- Antonin Chambolle
- Affiliation: Centre de Mathématiques Appliquées, École Polytechnique, 91128 Palaiseau Cedex, France
- MR Author ID: 320037
- ORCID: 0000-0002-9465-4659
- Email: antonin.chambolle@cmap.polytechnique.fr
- Massimiliano Morini
- Affiliation: Dipartimento di Scienze, Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze, 7/A, Parma, Italy
- MR Author ID: 661260
- Email: massimiliano.morini@unipr.it
- Matteo Novaga
- Affiliation: Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
- MR Author ID: 623522
- Email: novaga@dm.unipi.it
- Marcello Ponsiglione
- Affiliation: Dipartimento di Matematica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- MR Author ID: 685324
- Email: ponsigli@mat.uniroma1.it
- Received by editor(s): September 15, 2017
- Received by editor(s) in revised form: October 10, 2018, and January 11, 2019
- Published electronically: April 11, 2019
- Additional Notes: The first author was partially supported by the ANR, programs ANR-12-BS01-0014-01 “GEOMETRYA” and ANR-12-BS01-0008-01 “HJnet”.
The third author was partially supported by an invited professorship of the Ecole Polytechnique, Palaiseau.
The second and fourth authors were partially supported by the GNAMPA grant 2016 “Variational methods for nonlocal geometric flows”. - © Copyright 2019 American Mathematical Society
- Journal: J. Amer. Math. Soc. 32 (2019), 779-824
- MSC (2010): Primary 53C44, 49M25, 35D30, 35K93
- DOI: https://doi.org/10.1090/jams/919
- MathSciNet review: 3981988