Contact homology and virtual fundamental cycles
HTML articles powered by AMS MathViewer
- by John Pardon;
- J. Amer. Math. Soc. 32 (2019), 825-919
- DOI: https://doi.org/10.1090/jams/924
- Published electronically: April 18, 2019
- HTML | PDF | Request permission
Abstract:
We give a construction of contact homology in the sense of Eliashberg–Givental–Hofer. Specifically, we construct coherent virtual fundamental cycles on the relevant compactified moduli spaces of pseudo-holomorphic curves.References
- Mohammed Abouzaid, Framed bordism and Lagrangian embeddings of exotic spheres, Ann. of Math. (2) 175 (2012), no. 1, 71–185. MR 2874640, DOI 10.4007/annals.2012.175.1.4
- Miguel Abreu and Leonardo Macarini, Contact homology of good toric contact manifolds, Compos. Math. 148 (2012), no. 1, 304–334. MR 2881318, DOI 10.1112/S0010437X11007044
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 450957
- Erkao Bao and Ko Honda, Semi-global Kuranishi charts and the definition of contact homology, arXiv:1512.00580v3 (2016), 1–90.
- Erkao Bao and Ko Honda, Definition of cylindrical contact homology in dimension three, J. Topol. 11 (2018), no. 4, 1002–1053.
- Matthew Strom Borman, Yakov Eliashberg, and Emmy Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015), no. 2, 281–361. MR 3455235, DOI 10.1007/s11511-016-0134-4
- F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, and E. Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003), 799–888. MR 2026549, DOI 10.2140/gt.2003.7.799
- Frederic Bourgeois, A Morse-Bott approach to contact homology, ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)–Stanford University. MR 2703292
- Frédéric Bourgeois, A Morse-Bott approach to contact homology, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001) Fields Inst. Commun., vol. 35, Amer. Math. Soc., Providence, RI, 2003, pp. 55–77. MR 1969267
- Frédéric Bourgeois, Contact homology and homotopy groups of the space of contact structures, Math. Res. Lett. 13 (2006), no. 1, 71–85. MR 2200047, DOI 10.4310/MRL.2006.v13.n1.a6
- Frédéric Bourgeois, A survey of contact homology, New perspectives and challenges in symplectic field theory, CRM Proc. Lecture Notes, vol. 49, Amer. Math. Soc., Providence, RI, 2009, pp. 45–71. MR 2555933, DOI 10.1090/crmp/049/02
- Frédéric Bourgeois and Klaus Mohnke, Coherent orientations in symplectic field theory, Math. Z. 248 (2004), no. 1, 123–146. MR 2092725, DOI 10.1007/s00209-004-0656-x
- Frédéric Bourgeois and Otto van Koert, Contact homology of left-handed stabilizations and plumbing of open books, Commun. Contemp. Math. 12 (2010), no. 2, 223–263. MR 2646902, DOI 10.1142/S0219199710003762
- Roger Casals, Emmy Murphy, and Francisco Presas, Geometric criteria for overtwistedness, J. Amer. Math. Soc. 32 (2019), no. 2, 563–604. MR 3904160, DOI 10.1090/jams/917
- Kai Cieliebak and Yakov Eliashberg, From Stein to Weinstein and back, American Mathematical Society Colloquium Publications, vol. 59, American Mathematical Society, Providence, RI, 2012. Symplectic geometry of affine complex manifolds. MR 3012475, DOI 10.1090/coll/059
- Kai Cieliebak and Janko Latschev, The role of string topology in symplectic field theory, New perspectives and challenges in symplectic field theory, CRM Proc. Lecture Notes, vol. 49, Amer. Math. Soc., Providence, RI, 2009, pp. 113–146. MR 2555935, DOI 10.1090/crmp/049/04
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240, DOI 10.1007/BF02684599
- Tobias Ekholm, John Etnyre, and Michael Sullivan, The contact homology of Legendrian submanifolds in ${\Bbb R}^{2n+1}$, J. Differential Geom. 71 (2005), no. 2, 177–305. MR 2197142
- Tobias Ekholm, Ko Honda, and Tamás Kálmán, Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2627–2689. MR 3562353, DOI 10.4171/JEMS/650
- Tobias Ekholm and Alexandru Oancea, Symplectic and contact differential graded algebras, Geom. Topol. 21 (2017), no. 4, 2161–2230. MR 3654106, DOI 10.2140/gt.2017.21.2161
- Y. Eliashberg, Classification of overtwisted contact structures on $3$-manifolds, Invent. Math. 98 (1989), no. 3, 623–637. MR 1022310, DOI 10.1007/BF01393840
- Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. Special Volume (2000), 560–673. GAFA 2000 (Tel Aviv, 1999). MR 1826267, DOI 10.1007/978-3-0346-0425-3_{4}
- Yakov Eliashberg, Invariants in contact topology, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 327–338. MR 1648083
- Yakov Eliashberg, Symplectic field theory and its applications, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 217–246. MR 2334192, DOI 10.4171/022-1/10
- Yakov Eliashberg, Sang Seon Kim, and Leonid Polterovich, Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol. 10 (2006), 1635–1747. MR 2284048, DOI 10.2140/gt.2006.10.1635
- Joel W. Fish and Helmut Hofer, Lectures on Polyfolds and Symplectic Field Theory, arXiv:1808.07147v1 (2018), 1–134.
- Joel Fish and Helmut H. W. Hofer, Polyfold and SFT Notes I: A Primer on Polyfolds and Construction Tools, arXiv:1806.07025v2 (2018), 1–68.
- Joel Fish and Helmut H. W. Hofer, Polyfold and SFT Notes II: Local-Local M-Polyfold Constructions, arXiv:1808.04939v1 (2018), 1–123.
- A. Floer and H. Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993), no. 1, 13–38. MR 1200162, DOI 10.1007/BF02571639
- Kenji Fukaya, Lie groupoid, deformation of unstable curve, and construction of equivariant Kuranishi charts, arXiv:1701.02840v1 (2017), 1–86.
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian intersection Floer theory: anomaly and obstruction. Part I, AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2009. MR 2553465, DOI 10.1090/amsip/046.1
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian intersection Floer theory: anomaly and obstruction. Part II, AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2009. MR 2548482, DOI 10.1090/amsip/046.2
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Technical details on Kuranishi structure and virtual fundamental chain, arXiv:1209.4410v1 (2012), 1–257.
- Kenji Fukaya, Yong-Guen Oh, Hirosh Ohta, and Kaoru Ono, Kuranishi structure, Pseudo-holomorphic curve, and Virtual fundamental chain: Part 1, arXiv:1503.07631v1 (2015), 1–203.
- Kenji Fukaya, Yong-Guen Oh, Hirosh Ohta, and Kaoru Ono, Exponential decay estimates and smoothness of the moduli space of pseudoholomorphic curves, arXiv:1603.07026v1 (2016), 1–111.
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Shrinking good coordinate systems associated to Kuranishi structures, J. Symplectic Geom. 14 (2016), no. 4, 1295–1310. MR 3601890, DOI 10.4310/JSG.2016.v14.n4.a10
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Kuranishi structure, Pseudo-holomorphic curve, and virtual fundamental chain: Part 2, arXiv:1704.01848v1 (2017), 1–277.
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Construction of Kuranishi structures on the moduli spaces of pseudo holomorphic disks: I, Surveys in differential geometry 2017. Celebrating the 50th anniversary of the Journal of Differential Geometry, Surv. Differ. Geom., vol. 22, Int. Press, Somerville, MA, 2018, pp. 133–190. MR 3838117
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Construction of Kuranishi structures on the moduli spaces of pseudo holomorphic disks: II, arXiv:1808.06106v1 (2018), 1–47.
- Kenji Fukaya and Kaoru Ono, Arnold conjecture and Gromov-Witten invariant, Topology 38 (1999), no. 5, 933–1048. MR 1688434, DOI 10.1016/S0040-9383(98)00042-1
- W. D. Gillam and Samouil Molcho, Log differentiable spaces and manifolds with corners, arXiv:1507.06752v1 (2015), 1–128.
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, DOI 10.1007/BF01388806
- H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993), no. 3, 515–563. MR 1244912, DOI 10.1007/BF01232679
- H. Hofer, K. Wysocki, and E. Zehnder, Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995), no. 2, 270–328. MR 1334869, DOI 10.1007/BF01895669
- H. Hofer, K. Wysocki, and E. Zehnder, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré C Anal. Non Linéaire 13 (1996), no. 3, 337–379 (English, with English and French summaries). MR 1395676, DOI 10.1016/s0294-1449(16)30108-1
- H. Hofer, K. Wysocki, and E. Zehnder, Correction to: “Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics” [Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 3, 337–379; MR1395676 (97e:58029)], Ann. Inst. H. Poincaré C Anal. Non Linéaire 15 (1998), no. 4, 535–538. MR 1632925, DOI 10.1016/S0294-1449(98)80034-6
- H. Hofer, K. Wysocki, and E. Zehnder, Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, Topics in nonlinear analysis, Progr. Nonlinear Differential Equations Appl., vol. 35, Birkhäuser, Basel, 1999, pp. 381–475. MR 1725579
- H. Hofer, K. Wysocki, and E. Zehnder, Finite energy cylinders of small area, Ergodic Theory Dynam. Systems 22 (2002), no. 5, 1451–1486. MR 1934144, DOI 10.1017/S0143385702001013
- H. Hofer, K. Wysocki, and E. Zehnder, A general Fredholm theory. I. A splicing-based differential geometry, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 841–876. MR 2341834, DOI 10.4171/JEMS/99
- H. Hofer, K. Wysocki, and E. Zehnder, Integration theory on the zero sets of polyfold Fredholm sections, Math. Ann. 346 (2010), no. 1, 139–198. MR 2558891, DOI 10.1007/s00208-009-0393-x
- Helmut Hofer, Kris Wysocki, and Eduard Zehnder, A general Fredholm theory. III. Fredholm functors and polyfolds, Geom. Topol. 13 (2009), no. 4, 2279–2387. MR 2515707, DOI 10.2140/gt.2009.13.2279
- Helmut Hofer, Kris Wysocki, and Eduard Zehnder, sc-smoothness, retractions and new models for smooth spaces, Discrete Contin. Dyn. Syst. 28 (2010), no. 2, 665–788. MR 2644764, DOI 10.3934/dcds.2010.28.665
- H. Hofer, K. Wysocki, and E. Zehnder, Applications of polyfold theory I: The polyfolds of Gromov-Witten theory, Mem. Amer. Math. Soc. 248 (2017), no. 1179, v+218. MR 3683060, DOI 10.1090/memo/1179
- H. Hofer, K. Wysocki, and E. Zehnder, Polyfold and Fredholm Theory I: Basic Theory in M-Polyfolds, arXiv:1407.3185v1 (2014), 1–246.
- H. Hofer, K. Wysocki, and E. Zehnder, Polyfold and Fredholm Theory, arXiv:1707.08941v1 (2017), i–xviii,1–698.
- Helmut Hofer, Krzysztof Wysocki, and Eduard Zehnder, A general Fredholm theory. II. Implicit function theorems, Geom. Funct. Anal. 19 (2009), no. 1, 206–293. MR 2507223, DOI 10.1007/s00039-009-0715-x
- Lars Hörmander, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, Band 116, Springer-Verlag New York, Inc., New York, 1969. Third revised printing. MR 248435, DOI 10.1007/978-3-662-30722-9
- Michael Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 4, 313–361. MR 1941088, DOI 10.1007/s100970100041
- Michael Hutchings, The embedded contact homology index revisited, New perspectives and challenges in symplectic field theory, CRM Proc. Lecture Notes, vol. 49, Amer. Math. Soc., Providence, RI, 2009, pp. 263–297. MR 2555941, DOI 10.1090/crmp/049/10
- Michael Hutchings and Jo Nelson, Cylindrical contact homology for dynamically convex contact forms in three dimensions, J. Symplectic Geom. 14 (2016), no. 4, 983–1012. MR 3601881, DOI 10.4310/JSG.2016.v14.n4.a1
- Michael Hutchings and Clifford Henry Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. I, J. Symplectic Geom. 5 (2007), no. 1, 43–137. MR 2371184, DOI 10.4310/JSG.2007.v5.n1.a5
- Michael Hutchings and Clifford Henry Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. II, J. Symplectic Geom. 7 (2009), no. 1, 29–133. MR 2491716, DOI 10.4310/JSG.2009.v7.n1.a2
- Suguru Ishikawa, Construction of general symplectic field theory, arXiv:1807.09455v3 (2018), 1–320.
- Dominic Joyce, D-manifolds and d-orbifolds: a theory of derived differential geometry, Book Manuscript, 2012.
- Dominic Joyce, An introduction to d-manifolds and derived differential geometry, Moduli spaces, London Math. Soc. Lecture Note Ser., vol. 411, Cambridge Univ. Press, Cambridge, 2014, pp. 230–281. MR 3221297
- Dominic Joyce, A new definition of Kuranishi space, arXiv:1409.6908v3 (2015), 1–193.
- Dominic Joyce, A generalization of manifolds with corners, Adv. Math. 299 (2016), 760–862. MR 3519481, DOI 10.1016/j.aim.2016.06.004
- Chris Kottke and Richard B. Melrose, Generalized blow-up of corners and fiber products, Trans. Amer. Math. Soc. 367 (2015), no. 1, 651–705. MR 3271273, DOI 10.1090/S0002-9947-2014-06222-3
- Janko Latschev and Chris Wendl, Algebraic torsion in contact manifolds, Geom. Funct. Anal. 21 (2011), no. 5, 1144–1195. With an appendix by Michael Hutchings. MR 2846386, DOI 10.1007/s00039-011-0138-3
- Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, Topics in symplectic $4$-manifolds (Irvine, CA, 1996) First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA, 1998, pp. 47–83. MR 1635695
- Gang Liu and Gang Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998), no. 1, 1–74. MR 1642105
- Robert B. Lockhart and Robert C. McOwen, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 3, 409–447. MR 837256
- Patrick Massot, Klaus Niederkrüger, and Chris Wendl, Weak and strong fillability of higher dimensional contact manifolds, Invent. Math. 192 (2013), no. 2, 287–373. MR 3044125, DOI 10.1007/s00222-012-0412-5
- Dusa McDuff, Constructing the virtual fundamental class of a Kuranishi atlas, Algebr. Geom. Topol. 19 (2019), no. 1, 151–238. MR 3910580, DOI 10.2140/agt.2019.19.151
- Dusa McDuff and Dietmar Salamon, $J$-holomorphic curves and quantum cohomology, University Lecture Series, vol. 6, American Mathematical Society, Providence, RI, 1994. MR 1286255, DOI 10.1090/ulect/006
- Dusa McDuff and Dietmar Salamon, $J$-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, vol. 52, American Mathematical Society, Providence, RI, 2004. MR 2045629, DOI 10.1090/coll/052
- Dusa McDuff and Katrin Wehrheim, Smooth Kuranishi atlases with isotropy, Geom. Topol. 21 (2017), no. 5, 2725–2809. MR 3687107, DOI 10.2140/gt.2017.21.2725
- Dusa McDuff and Katrin Wehrheim, The topology of Kuranishi atlases, Proc. Lond. Math. Soc. (3) 115 (2017), no. 2, 221–292. MR 3684105, DOI 10.1112/plms.12032
- Dusa McDuff and Katrin Wehrheim, The fundamental class of smooth Kuranishi atlases with trivial isotropy, J. Topol. Anal. 10 (2018), no. 1, 71–243. MR 3737511, DOI 10.1142/S1793525318500048
- Marie-Paule Muller, Gromov’s Schwarz lemma as an estimate of the gradient for holomorphic curves, Holomorphic curves in symplectic geometry, Progr. Math., vol. 117, Birkhäuser, Basel, 1994, pp. 217–231. MR 1274931, DOI 10.1007/978-3-0348-8508-9_{8}
- Klaus Niederkrüger, The plastikstufe—a generalization of the overtwisted disk to higher dimensions, Algebr. Geom. Topol. 6 (2006), 2473–2508. MR 2286033, DOI 10.2140/agt.2006.6.2473
- Klaus Niederkrüger and Chris Wendl, Weak symplectic fillings and holomorphic curves, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 5, 801–853 (English, with English and French summaries). MR 2931519, DOI 10.24033/asens.2155
- John Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol. 20 (2016), no. 2, 779–1034. MR 3493097, DOI 10.2140/gt.2016.20.779
- Yongbin Ruan, Virtual neighborhoods and pseudo-holomorphic curves, Proceedings of 6th Gökova Geometry-Topology Conference, 1999, pp. 161–231. MR 1701645
- Dietmar Salamon, Lectures on Floer homology, Symplectic geometry and topology (Park City, UT, 1997) IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence, RI, 1999, pp. 143–229. MR 1702944, DOI 10.1016/S0165-2427(99)00127-0
- Jake P. Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2717339
- Ilya Ustilovsky, Infinitely many contact structures on $S^{4m+1}$, Internat. Math. Res. Notices 14 (1999), 781–791. MR 1704176, DOI 10.1155/S1073792899000392
- Chris Wendl, Lectures on Holomorphic Curves in Symplectic and Contact Geometry, arXiv:1011.1690v2 (2014), i–x,1–184.
- Chris Wendl, Lectures on Symplectic Field Theory, arXiv:1612.01009v2 (2016), i–x,1–333.
- Mei-Lin Yau, Vanishing of the contact homology of overtwisted contact 3-manifolds, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 2, 211–229. With an appendix by Yakov Eliashberg. MR 2230587
Bibliographic Information
- John Pardon
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 857067
- Received by editor(s): October 29, 2015
- Received by editor(s) in revised form: October 26, 2017, January 21, 2019, and February 4, 2019
- Published electronically: April 18, 2019
- Additional Notes: This research was partially conducted during the period the author served as a Clay Research Fellow. The author was also partially supported by a National Science Foundation Graduate Research Fellowship under grant number DGE–1147470.
- © Copyright 2019 American Mathematical Society
- Journal: J. Amer. Math. Soc. 32 (2019), 825-919
- MSC (2010): Primary 53D35, 53D40, 57R17, 53D42
- DOI: https://doi.org/10.1090/jams/924
- MathSciNet review: 3981989