Regular supercuspidal representations
HTML articles powered by AMS MathViewer
- by Tasho Kaletha;
- J. Amer. Math. Soc. 32 (2019), 1071-1170
- DOI: https://doi.org/10.1090/jams/925
- Published electronically: July 18, 2019
- HTML | PDF | Request permission
Abstract:
We show that, in good residual characteristic, most supercuspidal representations of a tamely ramified reductive $p$-adic group $G$ arise from pairs $(S,\theta )$, where $S$ is a tame elliptic maximal torus of $G$, and $\theta$ is a character of $S$ satisfying a simple root-theoretic property. We then give a new expression for the roots of unity that appear in the Adler-DeBacker-Spice character formula for these supercuspidal representations and use it to show that this formula bears a striking resemblance to the character formula for discrete series representations of real reductive groups. Led by this, we explicitly construct the local Langlands correspondence for these supercuspidal representations and prove stability and endoscopic transfer in the case of toral representations. In large residual characteristic this gives a construction of the local Langlands correspondence for almost all supercuspidal representations of reductive $p$-adic groups.References
- M. Artin, J. E. Bertin, M. Demazure, P. Gabriel, A. Grothendieck, M. Raynaud, and J.-P. Serre, Schémas en groupes. Fasc. 1: Exposés 1 à 4, Institut des Hautes Études Scientifiques, Paris, 1963 (French). Deuxième édition; Séminaire de Géométrie Algébrique de l’Institut des Hautes Études Scientifiques, 1963, dirigé par Michel Demazure et Alexander Grothendieck. MR 207702
- Jeffrey D. Adler, Refined anisotropic $K$-types and supercuspidal representations, Pacific J. Math. 185 (1998), no. 1, 1–32. MR 1653184, DOI 10.2140/pjm.1998.185.1
- Moshe Isaac Adrian, A new construction of the tame local Langlands correspondence for GL(n,F), n a prime, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–University of Maryland, College Park. MR 2941466
- Moshe Adrian, A new realization of the Langlands correspondence for $\textrm {PGL}(2,F)$, J. Number Theory 133 (2013), no. 2, 446–474. MR 2994367, DOI 10.1016/j.jnt.2012.08.004
- Jeffrey D. Adler and Loren Spice, Good product expansions for tame elements of $p$-adic groups, Int. Math. Res. Pap. IMRP 1 (2008), Art. ID rp. 003, 95. MR 2431235
- Jeffrey D. Adler and Loren Spice, Supercuspidal characters of reductive $p$-adic groups, Amer. J. Math. 131 (2009), no. 4, 1137–1210. MR 2543925, DOI 10.1353/ajm.0.0060
- Colin J. Bushnell and Guy Henniart, The essentially tame local Langlands correspondence. I, J. Amer. Math. Soc. 18 (2005), no. 3, 685–710. MR 2138141, DOI 10.1090/S0894-0347-05-00487-X
- Colin J. Bushnell and Guy Henniart, The essentially tame local Langlands correspondence. II. Totally ramified representations, Compos. Math. 141 (2005), no. 4, 979–1011. MR 2148193, DOI 10.1112/S0010437X05001363
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- Mikhail Borovoi, Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (1998), no. 626, viii+50. MR 1401491, DOI 10.1090/memo/0626
- A. Borel and T. A. Springer, Rationality properties of linear algebraic groups. II, Tohoku Math. J. (2) 20 (1968), 443–497. MR 244259, DOI 10.2748/tmj/1178243073
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923, DOI 10.1007/BF02715544
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- F. Bruhat and J. Tits, Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 671–698 (French). MR 927605
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- Stephen DeBacker, Some applications of Bruhat-Tits theory to harmonic analysis on a reductive $p$-adic group, Michigan Math. J. 50 (2002), no. 2, 241–261. MR 1914064, DOI 10.1307/mmj/1028575733
- Stephen DeBacker, Parameterizing conjugacy classes of maximal unramified tori via Bruhat-Tits theory, Michigan Math. J. 54 (2006), no. 1, 157–178. MR 2214792, DOI 10.1307/mmj/1144437442
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- Stephen DeBacker and Mark Reeder, Depth-zero supercuspidal $L$-packets and their stability, Ann. of Math. (2) 169 (2009), no. 3, 795–901. MR 2480618, DOI 10.4007/annals.2009.169.795
- Stephen DeBacker and Mark Reeder, On some generic very cuspidal representations, Compos. Math. 146 (2010), no. 4, 1029–1055. MR 2660683, DOI 10.1112/S0010437X10004653
- Stephen DeBacker and Loren Spice, Stability of character sums for positive-depth, supercuspidal representations, J. Reine Angew. Math. 742 (2018), 47–78. MR 3849622, DOI 10.1515/crelle-2015-0094
- P. Gille, Type des tores maximaux des groupes semi-simples, J. Ramanujan Math. Soc. 19 (2004), no. 3, 213–230 (French, with English summary). MR 2139505
- Jeffrey Hakim, Constructing tame supercuspidal representations, Represent. Theory 22 (2018), 45–86. MR 3817964, DOI 10.1090/ert/514
- Thomas C. Hales, A simple definition of transfer factors for unramified groups, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 109–134. MR 1216184, DOI 10.1090/conm/145/1216184
- Xuhua He, On the affineness of Deligne-Lusztig varieties, J. Algebra 320 (2008), no. 3, 1207–1219. MR 2427638, DOI 10.1016/j.jalgebra.2007.12.028
- Jeffrey Hakim and Fiona Murnaghan, Distinguished tame supercuspidal representations, Int. Math. Res. Pap. IMRP 2 (2008), Art. ID rpn005, 166. MR 2431732
- Roger E. Howe, Tamely ramified supercuspidal representations of $\textrm {Gl}_{n}$, Pacific J. Math. 73 (1977), no. 2, 437–460. MR 492087, DOI 10.2140/pjm.1977.73.437
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften, vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Tasho Kaletha, Endoscopic character identities for depth-zero supercuspidal $L$-packets, Duke Math. J. 158 (2011), no. 2, 161–224. MR 2805068, DOI 10.1215/00127094-1333995
- Tasho Kaletha, Genericity and contragredience in the local Langlands correspondence, Algebra Number Theory 7 (2013), no. 10, 2447–2474. MR 3194648, DOI 10.2140/ant.2013.7.2447
- Tasho Kaletha, Supercuspidal $L$-packets via isocrystals, Amer. J. Math. 136 (2014), no. 1, 203–239. MR 3163358, DOI 10.1353/ajm.2014.0001
- Tasho Kaletha, Epipelagic $L$-packets and rectifying characters, Invent. Math. 202 (2015), no. 1, 1–89. MR 3402796, DOI 10.1007/s00222-014-0566-4
- Tasho Kaletha, Rigid inner forms of real and $p$-adic groups, Ann. of Math. (2) 184 (2016), no. 2, 559–632. MR 3548533, DOI 10.4007/annals.2016.184.2.6
- Tasho Kaletha, Global rigid inner forms and multiplicities of discrete automorphic representations, Invent. Math. 213 (2018), no. 1, 271–369. MR 3815567, DOI 10.1007/s00222-018-0791-3
- Tasho Kaletha, Rigid inner forms vs isocrystals, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 1, 61–101. MR 3743236, DOI 10.4171/JEMS/759
- Ju-Lee Kim, Supercuspidal representations: an exhaustion theorem, J. Amer. Math. Soc. 20 (2007), no. 2, 273–320. MR 2276772, DOI 10.1090/S0894-0347-06-00544-3
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184. MR 507800, DOI 10.1007/BF01390249
- Robert E. Kottwitz, $B(G)$ for all local and global fields, arXiv:1401.5728.
- Robert E. Kottwitz, Rational conjugacy classes in reductive groups, Duke Math. J. 49 (1982), no. 4, 785–806. MR 683003
- Robert E. Kottwitz, Sign changes in harmonic analysis on reductive groups, Trans. Amer. Math. Soc. 278 (1983), no. 1, 289–297. MR 697075, DOI 10.1090/S0002-9947-1983-0697075-6
- Robert E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611–650. MR 757954, DOI 10.1215/S0012-7094-84-05129-9
- Robert E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), no. 3, 365–399. MR 858284, DOI 10.1007/BF01458611
- Robert E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339. MR 1485921, DOI 10.1023/A:1000102604688
- Robert E. Kottwitz, Transfer factors for Lie algebras, Represent. Theory 3 (1999), 127–138. MR 1703328, DOI 10.1090/S1088-4165-99-00068-0
- Robert E. Kottwitz and Diana Shelstad, On splitting invariants and sign conventions in endoscopic transfer, arXiv:1201.5658.
- Robert E. Kottwitz and Diana Shelstad, Foundations of twisted endoscopy, Astérisque 255 (1999), vi+190 (English, with English and French summaries). MR 1687096
- P. C. Kutzko, Mackey’s theorem for nonunitary representations, Proc. Amer. Math. Soc. 64 (1977), no. 1, 173–175. MR 442145, DOI 10.1090/S0002-9939-1977-0442145-3
- Robert P. Langlands, On the functional equation of the Artin $L$-functions, http://publications.ias.edu/rpl/paper/61.
- R. P. Langlands, Stable conjugacy: definitions and lemmas, Canadian J. Math. 31 (1979), no. 4, 700–725. MR 540901, DOI 10.4153/CJM-1979-069-2
- R. P. Langlands, Les débuts d’une formule des traces stable, Publications Mathématiques de l’Université Paris VII [Mathematical Publications of the University of Paris VII], vol. 13, Université de Paris VII, U.E.R. de Mathématiques, Paris, 1983 (French). MR 697567
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI 10.1090/surv/031/03
- Robert P. Langlands, Singularités et transfert, Ann. Math. Qué. 37 (2013), no. 2, 173–253 (French, with English and French summaries). MR 3117742, DOI 10.1007/s40316-013-0008-5
- R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), no. 1-4, 219–271. MR 909227, DOI 10.1007/BF01458070
- R. Langlands and D. Shelstad, Descent for transfer factors, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 485–563. MR 1106907
- Lawrence Morris, $P$-cuspidal representations of level one, Proc. London Math. Soc. (3) 58 (1989), no. 3, 550–558. MR 988102, DOI 10.1112/plms/s3-58.3.550
- Allen Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), no. 4, 863–930. MR 853218, DOI 10.2307/2374518
- Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, DOI 10.1007/BF01231566
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI 10.1007/BF02566411
- Fiona Murnaghan, Parametrization of tame supercuspidal representations, On certain $L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 439–469. MR 2767524
- C. Mœglin and J.-L. Waldspurger, Modèles de Whittaker dégénérés pour des groupes $p$-adiques, Math. Z. 196 (1987), no. 3, 427–452 (French). MR 913667, DOI 10.1007/BF01200363
- Bao Châu Ngô, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1–169 (French). MR 2653248, DOI 10.1007/s10240-010-0026-7
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- G. Pappas and M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 118–198. With an appendix by T. Haines and Rapoport. MR 2435422, DOI 10.1016/j.aim.2008.04.006
- Gopal Prasad, Galois-fixed points in the Bruhat-Tits building of a reductive group, Bull. Soc. Math. France 129 (2001), no. 2, 169–174 (English, with English and French summaries). MR 1871292, DOI 10.24033/bsmf.2391
- M. S. Raghunathan, Tori in quasi-split-groups, J. Ramanujan Math. Soc. 19 (2004), no. 4, 281–287. MR 2125504
- Michael Rapoport, A guide to the reduction modulo $p$ of Shimura varieties, Astérisque 298 (2005), 271–318 (English, with English and French summaries). Automorphic forms. I. MR 2141705
- Mark Reeder, Supercuspidal $L$-packets of positive depth and twisted Coxeter elements, J. Reine Angew. Math. 620 (2008), 1–33. MR 2427973, DOI 10.1515/CRELLE.2008.046
- Carl Riehm, The norm $1$ group of a ${\mathfrak {P}}$-adic division algebra, Amer. J. Math. 92 (1970), 499–523. MR 262250, DOI 10.2307/2373336
- David Lawrence Roe, The Local Langlands Correspondence for Tamely Ramified Groups, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)–Harvard University. MR 2898606
- M. Rapoport and M. Richartz, On the classification and specialization of $F$-isocrystals with additional structure, Compositio Math. 103 (1996), no. 2, 153–181. MR 1411570
- Mark Reeder and Jiu-Kang Yu, Epipelagic representations and invariant theory, J. Amer. Math. Soc. 27 (2014), no. 2, 437–477. MR 3164986, DOI 10.1090/S0894-0347-2013-00780-8
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- D. Shelstad, Characters and inner forms of a quasi-split group over $\textbf {R}$, Compositio Math. 39 (1979), no. 1, 11–45. MR 539000
- D. Shelstad, $L$-indistinguishability for real groups, Math. Ann. 259 (1982), no. 3, 385–430. MR 661206, DOI 10.1007/BF01456950
- D. Shelstad, A formula for regular unipotent germs, Astérisque 171-172 (1989), 275–277. Orbites unipotentes et représentations, II. MR 1021506
- D. Shelstad, Tempered endoscopy for real groups. I. Geometric transfer with canonical factors, Representation theory of real reductive Lie groups, Contemp. Math., vol. 472, Amer. Math. Soc., Providence, RI, 2008, pp. 215–246. MR 2454336, DOI 10.1090/conm/472/09241
- D. Shelstad, Tempered endoscopy for real groups. III. Inversion of transfer and $L$-packet structure, Represent. Theory 12 (2008), 369–402. MR 2448289, DOI 10.1090/S1088-4165-08-00337-3
- D. Shelstad, Tempered endoscopy for real groups. II. Spectral transfer factors, Automorphic forms and the Langlands program, Adv. Lect. Math. (ALM), vol. 9, Int. Press, Somerville, MA, 2010, pp. 236–276. MR 2581952
- Loren Spice, Topological Jordan decompositions, J. Algebra 319 (2008), no. 8, 3141–3163. MR 2408311, DOI 10.1016/j.jalgebra.2007.11.004
- T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser, Boston, MA, 1981. MR 632835
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Math., Vol. 131, Springer, Berlin-New York, 1970, pp. 167–266. MR 268192
- Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 180554, DOI 10.1007/BF02684397
- Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, RI, 1968. MR 230728
- J. Tate, Number theoretic background, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 3–26. MR 546607
- Jacques Tits, Groupes de Whitehead de groupes algébriques simples sur un corps (d’après V. P. Platonov et al.), Séminaire Bourbaki, 29e année (1976/77), Lecture Notes in Math., vol. 677, Springer, Berlin, 1978, pp. Exp. No. 505, pp. 218–236 (French). MR 521771
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 29–69. MR 546588
- David A. Vogan Jr., Gel′fand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75–98. MR 506503, DOI 10.1007/BF01390063
- J.-L. Waldspurger, Le lemme fondamental implique le transfert, Compositio Math. 105 (1997), no. 2, 153–236 (French). MR 1440722, DOI 10.1023/A:1000103112268
- Jean-Loup Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque 269 (2001), vi+449 (French, with English and French summaries). MR 1817880
- J.-L. Waldspurger, Endoscopie et changement de caractéristique, J. Inst. Math. Jussieu 5 (2006), no. 3, 423–525 (French, with English and French summaries). MR 2241929, DOI 10.1017/S1474748006000041
- Jiu-Kang Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), no. 3, 579–622. MR 1824988, DOI 10.1090/S0894-0347-01-00363-0
- Jiu-Kang Yu, On the local Langlands correspondence for tori, Ottawa lectures on admissible representations of reductive $p$-adic groups, Fields Inst. Monogr., vol. 26, Amer. Math. Soc., Providence, RI, 2009, pp. 177–183. MR 2508725, DOI 10.1090/fim/026/07
- Jiu-Kang Yu, Smooth models associated to concave functions in Bruhat-Tits theory, Autour des schémas en groupes. Vol. III, Panor. Synthèses, vol. 47, Soc. Math. France, Paris, 2015, pp. 227–258 (English, with English and French summaries). MR 3525846
Bibliographic Information
- Tasho Kaletha
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 939928
- Received by editor(s): March 19, 2017
- Received by editor(s) in revised form: October 16, 2018, January 28, 2019, and April 17, 2019
- Published electronically: July 18, 2019
- Additional Notes: This research was supported in part by NSF grants DMS-1161489, DMS-1801687 and a Sloan Fellowship
- © Copyright 2019 American Mathematical Society
- Journal: J. Amer. Math. Soc. 32 (2019), 1071-1170
- MSC (2010): Primary 22E50, 11S37, 11F70
- DOI: https://doi.org/10.1090/jams/925
- MathSciNet review: 4013740