Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic
HTML articles powered by AMS MathViewer
- by Alexander Premet and David I. Stewart;
- J. Amer. Math. Soc. 32 (2019), 965-1008
- DOI: https://doi.org/10.1090/jams/926
- Published electronically: July 19, 2019
- HTML | PDF | Request permission
Abstract:
Let $G$ be an exceptional simple algebraic group over an algebraically closed field $k$ and suppose that $p={\operatorname {char}}(k)$ is a good prime for $G$. In this paper we classify the maximal Lie subalgebras $\mathfrak {m}$ of the Lie algebra $\mathfrak {g}=\operatorname {Lie}(G)$. Specifically, we show that either $\mathfrak {m}=\operatorname {Lie}(M)$ for some maximal connected subgroup $M$ of $G$, or $\mathfrak {m}$ is a maximal Witt subalgebra of $\mathfrak {g}$, or $\mathfrak {m}$ is a maximal exotic semidirect product. The conjugacy classes of maximal connected subgroups of $G$ are known thanks to the work of Seitz, Testerman, and Liebeck–Seitz. All maximal Witt subalgebras of $\mathfrak {g}$ are $G$-conjugate and they occur when $G$ is not of type ${\mathrm {E}}_6$ and $p-1$ coincides with the Coxeter number of $G$. We show that there are two conjugacy classes of maximal exotic semidirect products in $\mathfrak {g}$, one in characteristic $5$ and one in characteristic $7$, and both occur when $G$ is a group of type ${\mathrm {E}}_7$.References
- Georgia Benkart, Thomas Gregory, and Alexander Premet, The recognition theorem for graded Lie algebras in prime characteristic, Mem. Amer. Math. Soc. 197 (2009), no. 920, xii+145. MR 2488391, DOI 10.1090/memo/0920
- Michael Bate, Benjamin Martin, Gerhard Röhrle, and Rudolf Tange, Complete reducibility and separability, Trans. Amer. Math. Soc. 362 (2010), no. 8, 4283–4311. MR 2608407, DOI 10.1090/S0002-9947-10-04901-9
- Richard Block, Trace forms on Lie algebras, Canadian J. Math. 14 (1962), 553–564. MR 140555, DOI 10.4153/CJM-1962-046-5
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- N. Bourbaki, Groupes et Algèbres de Lie, IV, V, VI. Hermann, Paris, 1968.
- N. Bourbaki, Groupes et Algèbres de Lie, VII, VIII. Hermann, Paris, 1975.
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- Stephen Donkin, On tilting modules for algebraic groups, Math. Z. 212 (1993), no. 1, 39–60. MR 1200163, DOI 10.1007/BF02571640
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (3 plates) (Russian). MR 47629
- Ulrich Görtz and Torsten Wedhorn, Algebraic geometry I, Advanced Lectures in Mathematics, Vieweg + Teubner, Wiesbaden, 2010. Schemes with examples and exercises. MR 2675155, DOI 10.1007/978-3-8348-9722-0
- Sebastian Herpel, On the smoothness of centralizers in reductive groups, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3753–3774. MR 3042602, DOI 10.1090/S0002-9947-2012-05745-X
- Sebastian Herpel and David I. Stewart, Maximal subalgebras of Cartan type in the exceptional Lie algebras, Selecta Math. (N.S.) 22 (2016), no. 2, 765–799. MR 3477335, DOI 10.1007/s00029-015-0199-5
- James E. Humphreys, Algebraic groups and modular Lie algebras, Memoirs of the American Mathematical Society, No. 71, American Mathematical Society, Providence, RI, 1967. MR 217075
- N. Jacobson, Classes of restricted Lie algebras of characteristic $p$. II, Duke Math. J. 10 (1943), 107–121. MR 7749, DOI 10.1215/S0012-7094-43-01011-7
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1–211. MR 2042689
- Martin W. Liebeck and Gary M. Seitz, The maximal subgroups of positive dimension in exceptional algebraic groups, Mem. Amer. Math. Soc. 169 (2004), no. 802, vi+227. MR 2044850, DOI 10.1090/memo/0802
- R. Lawther and D. M. Testerman, Centres of centralizers of unipotent elements in simple algebraic groups, Mem. Amer. Math. Soc. 210 (2011), no. 988, vi+188. MR 2780340, DOI 10.1090/S0065-9266-10-00594-6
- Frank Lübeck, Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math. 4 (2001), 135–169. MR 1901354, DOI 10.1112/S1461157000000838
- George J. McNinch, Optimal $\textrm {SL}(2)$-homomorphisms, Comment. Math. Helv. 80 (2005), no. 2, 391–426. MR 2142248, DOI 10.4171/CMH/19
- A. A. Premet, Algebraic groups associated with Lie $p$-algebras of Cartan type, Mat. Sb. (N.S.) 122(164) (1983), no. 1, 82–96 (Russian). MR 715836
- A. A. Premet, Weights of infinitesimally irreducible representations of Chevalley groups over a field of prime characteristic, Mat. Sb. (N.S.) 133(175) (1987), no. 2, 167–183, 271 (Russian); English transl., Math. USSR-Sb. 61 (1988), no. 1, 167–183. MR 905003, DOI 10.1070/SM1988v061n01ABEH003200
- A. A. Premet, The Green ring of a simple three-dimensional Lie $p$-algebra, Izv. Vyssh. Uchebn. Zaved. Mat. 10 (1991), 56–67 (Russian); English transl., Soviet Math. (Iz. VUZ) 35 (1991), no. 10, 51–60. MR 1179217
- A. A. Premet, A theorem on the restriction of invariants, and nilpotent elements in $W_n$, Mat. Sb. 182 (1991), no. 5, 746–773 (Russian); English transl., Math. USSR-Sb. 73 (1992), no. 1, 135–159. MR 1124106, DOI 10.1070/SM1992v073n01ABEH002538
- Alexander Premet, An analogue of the Jacobson-Morozov theorem for Lie algebras of reductive groups of good characteristics, Trans. Amer. Math. Soc. 347 (1995), no. 8, 2961–2988. MR 1290730, DOI 10.1090/S0002-9947-1995-1290730-7
- Alexander Premet, Nilpotent orbits in good characteristic and the Kempf-Rousseau theory, J. Algebra 260 (2003), no. 1, 338–366. Special issue celebrating the 80th birthday of Robert Steinberg. MR 1976699, DOI 10.1016/S0021-8693(02)00662-2
- Alexander Premet, A modular analogue of Morozov’s theorem on maximal subalgebras of simple Lie algebras, Adv. Math. 311 (2017), 833–884. MR 3628232, DOI 10.1016/j.aim.2017.03.011
- Alexander Premet and David I. Stewart, Rigid orbits and sheets in reductive Lie algebras over fields of prime characteristic, J. Inst. Math. Jussieu 17 (2018), no. 3, 583–613. MR 3789182, DOI 10.1017/S1474748016000086
- Alexander Premet and Helmut Strade, Simple Lie algebras of small characteristic. II. Exceptional roots, J. Algebra 216 (1999), no. 1, 190–301. MR 1694562, DOI 10.1006/jabr.1998.7746
- A. A. Premet and I. D. Suprunenko, Quadratic modules for Chevalley groups over fields of odd characteristics, Math. Nachr. 110 (1983), 65–96. MR 721267, DOI 10.1002/mana.19831100107
- Thomas Purslow, The restricted Ermolaev algebra and $F_4$, Exp. Math. 27 (2018), no. 3, 272–276. MR 3857663, DOI 10.1080/10586458.2016.1256005
- Gary M. Seitz, Maximal subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 90 (1991), no. 441, iv+197. MR 1048074, DOI 10.1090/memo/0441
- Gary M. Seitz, Unipotent elements, tilting modules, and saturation, Invent. Math. 141 (2000), no. 3, 467–502. MR 1779618, DOI 10.1007/s002220000073
- G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 40, Springer-Verlag New York, Inc., New York, 1967. MR 245627, DOI 10.1007/978-3-642-94985-2
- N. Spaltenstein, Existence of good transversal slices to nilpotent orbits in good characteristic, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), no. 2, 283–286. MR 763422
- Paul Sobaje, Springer isomorphisms in characteristic $p$, Transform. Groups 20 (2015), no. 4, 1141–1153. MR 3416442, DOI 10.1007/s00031-015-9320-2
- David I. Stewart, On the minimal modules for exceptional Lie algebras: Jordan blocks and stabilizers, LMS J. Comput. Math. 19 (2016), no. 1, 235–258. MR 3530500, DOI 10.1112/S1461157016000103
- David I. Stewart and Adam R. Thomas, The Jacobson-Morozov theorem and complete reducibility of Lie subalgebras, Proc. Lond. Math. Soc. (3) 116 (2018), no. 1, 68–100. MR 3747044, DOI 10.1112/plms.12067
- Helmut Strade, Simple Lie algebras over fields of positive characteristic. I, De Gruyter Expositions in Mathematics, vol. 38, Walter de Gruyter & Co., Berlin, 2004. Structure theory. MR 2059133, DOI 10.1515/9783110197945
- Donna M. Testerman, Irreducible subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 75 (1988), no. 390, iv+190. MR 961210, DOI 10.1090/memo/0390
- Donna M. Testerman, $A_1$-type overgroups of elements of order $p$ in semisimple algebraic groups and the associated finite groups, J. Algebra 177 (1995), no. 1, 34–76. MR 1356359, DOI 10.1006/jabr.1995.1285
Bibliographic Information
- Alexander Premet
- Affiliation: School of Mathematics, The University of Manchester, Oxford Road, M13 9PL, United Kingdom
- MR Author ID: 190461
- Email: alexander.premet@manchester.ac.uk
- David I. Stewart
- Affiliation: University of Newcastle, Newcastle upon Tyne, NE1 7RU, United Kingdom
- MR Author ID: 884527
- Email: david.stewart@ncl.ac.uk
- Received by editor(s): December 4, 2017
- Received by editor(s) in revised form: March 18, 2019
- Published electronically: July 19, 2019
- © Copyright 2019 American Mathematical Society
- Journal: J. Amer. Math. Soc. 32 (2019), 965-1008
- MSC (2010): Primary 17B45
- DOI: https://doi.org/10.1090/jams/926
- MathSciNet review: 4013738