Normal subgroups of mapping class groups and the metaconjecture of Ivanov
HTML articles powered by AMS MathViewer
- by Tara E. Brendle and Dan Margalit
- J. Amer. Math. Soc. 32 (2019), 1009-1070
- DOI: https://doi.org/10.1090/jams/927
- Published electronically: August 27, 2019
- HTML | PDF | Request permission
Abstract:
We prove that if a normal subgroup of the extended mapping class group of a closed surface has an element of sufficiently small support, then its automorphism group and abstract commensurator group are both isomorphic to the extended mapping class group. The proof relies on another theorem we prove, which states that many simplicial complexes associated to a closed surface have automorphism group isomorphic to the extended mapping class group. These results resolve the metaconjecture of N. V. Ivanov, which asserts that any “sufficiently rich” object associated to a surface has automorphism group isomorphic to the extended mapping class group, for a broad class of such objects. As applications, we show: (1) right-angled Artin groups and surface groups cannot be isomorphic to normal subgroups of mapping class groups containing elements of small support, (2) normal subgroups of distinct mapping class groups cannot be isomorphic if they both have elements of small support, and (3) distinct normal subgroups of the mapping class group with elements of small support are not isomorphic. Our results also suggest a new framework for the classification of normal subgroups of the mapping class group.References
- Oswald Teichmüller, Variable Riemann surfaces, Handbook of Teichmüller theory. Vol. IV, IRMA Lect. Math. Theor. Phys., vol. 19, Eur. Math. Soc., Zürich, 2014, pp. 787–803. Translated from the German [MR0018762] by Annette A’Campo-Neuen. MR 3289716, DOI 10.4171/117-1/19
- Javier Aramayona, Simplicial embeddings between pants graphs, Geom. Dedicata 144 (2010), 115–128. MR 2580421, DOI 10.1007/s10711-009-9391-0
- Javier Aramayona and Christopher J. Leininger, Finite rigid sets in curve complexes, J. Topol. Anal. 5 (2013), no. 2, 183–203. MR 3062946, DOI 10.1142/S1793525313500076
- Juliette Bavard, Spencer Dowdall, and Kasra Rafi, Isomorphisms between big mapping class groups, Internat. Math. Res. Notices, to appear.
- Joan Birman, Nathan Broaddus, and William Menasco, Finite rigid sets and homologically nontrivial spheres in the curve complex of a surface, J. Topol. Anal. 7 (2015), no. 1, 47–71. MR 3284389, DOI 10.1142/S179352531550003X
- Joan S. Birman, Alex Lubotzky, and John McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983), no. 4, 1107–1120. MR 726319, DOI 10.1215/S0012-7094-83-05046-9
- Brian H. Bowditch, Rigidity of the strongly separating curve graph, Michigan Math. J. 65 (2016), no. 4, 813–832. MR 3579187, DOI 10.1307/mmj/1480734021
- Tara E. Brendle and Dan Margalit, Commensurations of the Johnson kernel, Geom. Topol. 8 (2004), 1361–1384. MR 2119299, DOI 10.2140/gt.2004.8.1361
- Tara E. Brendle and Dan Margalit, Addendum to: “Commensurations of the Johnson kernel” [Geom. Topol. 8 (2004), 1361–1384; MR2119299], Geom. Topol. 12 (2008), no. 1, 97–101. MR 2377246, DOI 10.2140/gt.2008.12.97
- Martin Bridson, Alexandra Pettet, and Juan Souto, The abstract commensurator of the Johnson kernels, preprint.
- Lei Chen, Personal communication, October 2017.
- Matt Clay, Christopher J. Leininger, and Dan Margalit, Abstract commensurators of right-angled Artin groups and mapping class groups, Math. Res. Lett. 21 (2014), no. 3, 461–467. MR 3272023, DOI 10.4310/MRL.2014.v21.n3.a4
- Matt Clay, Johanna Mangahas, and Dan Margalit, Right-angled Artin groups as normal subgroups of mapping class groups, In preparation.
- F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152. MR 3589159, DOI 10.1090/memo/1156
- Max Dehn, Papers on group theory and topology, Springer-Verlag, New York, 1987. Translated from the German and with introductions and an appendix by John Stillwell; With an appendix by Otto Schreier. MR 881797, DOI 10.1007/978-1-4612-4668-8
- Valentina Disarlo, Combinatorial rigidity of arc complexes, arxiv:1505.08080 (2015).
- Benson Farb, Some problems on mapping class groups and moduli space, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math., vol. 74, Amer. Math. Soc., Providence, RI, 2006, pp. 11–55. MR 2264130, DOI 10.1090/pspum/074/2264130
- Benson Farb and Nikolai V. Ivanov, The Torelli geometry and its applications: research announcement, Math. Res. Lett. 12 (2005), no. 2-3, 293–301. MR 2150885, DOI 10.4310/MRL.2005.v12.n3.a2
- Benson Farb and Nikolai V. Ivanov, Torelli buildings and their automorphisms, arxiv:1410.6223 (2014).
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- Albert Fathi, François Laudenbach, and Valentin Poénaru, Thurston’s work on surfaces, Mathematical Notes, vol. 48, Princeton University Press, Princeton, NJ, 2012. Translated from the 1979 French original by Djun M. Kim and Dan Margalit. MR 3053012
- Louis Funar, On the TQFT representations of the mapping class groups, Pacific J. Math. 188 (1999), no. 2, 251–274. MR 1684208, DOI 10.2140/pjm.1999.188.251
- Louis Funar, On power subgroups of mapping class groups, J. Gökova Geom. Topol. GGT 8 (2014), 14–34. MR 3310570
- Alexander Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1995, pp. Exp. No. 221, 249–276 (French). MR 1611822
- Sebastian Hensel, Rigidity and flexibility for handlebody groups, Comment. Math. Helv. 93 (2018), no. 2, 335–358. MR 3811754, DOI 10.4171/CMH/436
- Jesús Hernández Hernández, Edge-preserving maps of curve graphs, Topology Appl. 246 (2018), 83–105. MR 3834842, DOI 10.1016/j.topol.2018.06.013
- Jesús Hernández Hernández and Ferrán Valdez, Automorphism groups of simplicial complexes of infinite-type surfaces, Publ. Mat. 61 (2017), no. 1, 51–82. MR 3590114, DOI 10.5565/PUBLMAT_{6}1117_{0}2
- Elmas Irmak, Superinjective simplicial maps of complexes of curves and injective homomorphisms of subgroups of mapping class groups, Topology 43 (2004), no. 3, 513–541. MR 2041629, DOI 10.1016/j.top.2003.03.002
- Elmas Irmak, Complexes of nonseparating curves and mapping class groups, Michigan Math. J. 54 (2006), no. 1, 81–110. MR 2214789, DOI 10.1307/mmj/1144437439
- Elmas Irmak, Superinjective simplicial maps of complexes of curves and injective homomorphisms of subgroups of mapping class groups. II, Topology Appl. 153 (2006), no. 8, 1309–1340. MR 2202856, DOI 10.1016/j.topol.2005.04.001
- Elmas Irmak and John D. McCarthy, Injective simplicial maps of the arc complex, Turkish J. Math. 34 (2010), no. 3, 339–354. MR 2681579
- N. V. Ivanov, The rank of Teichmüller modular groups, Mat. Zametki 44 (1988), no. 5, 636–644, 701 (Russian); English transl., Math. Notes 44 (1988), no. 5-6, 829–832 (1989). MR 980584, DOI 10.1007/BF01158423
- Nikolai V. Ivanov, Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, vol. 115, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by E. J. F. Primrose and revised by the author. MR 1195787, DOI 10.1090/mmono/115
- Nikolai V. Ivanov, Automorphism of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices 14 (1997), 651–666. MR 1460387, DOI 10.1155/S1073792897000433
- Nikolai V. Ivanov, Fifteen problems about the mapping class groups, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math., vol. 74, Amer. Math. Soc., Providence, RI, 2006, pp. 71–80. MR 2264532, DOI 10.1090/pspum/074/2264532
- Nikolai V. Ivanov and John D. McCarthy, On injective homomorphisms between Teichmüller modular groups. I, Invent. Math. 135 (1999), no. 2, 425–486. MR 1666775, DOI 10.1007/s002220050292
- Dennis Johnson, The structure of the Torelli group. I. A finite set of generators for ${\cal I}$, Ann. of Math. (2) 118 (1983), no. 3, 423–442. MR 727699, DOI 10.2307/2006977
- Gareth A. Jones, Personal communication (2018).
- Mustafa Korkmaz, Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topology Appl. 95 (1999), no. 2, 85–111. MR 1696431, DOI 10.1016/S0166-8641(97)00278-2
- Mustafa Korkmaz and Athanase Papadopoulos, On the arc and curve complex of a surface, Math. Proc. Cambridge Philos. Soc. 148 (2010), no. 3, 473–483. MR 2609303, DOI 10.1017/S0305004109990387
- Feng Luo, Automorphisms of the complex of curves, Topology 39 (2000), no. 2, 283–298. MR 1722024, DOI 10.1016/S0040-9383(99)00008-7
- Wilhelm Magnus, On a theorem of Marshall Hall, Ann. of Math. (2) 40 (1939), 764–768. MR 262, DOI 10.2307/1968892
- Dan Margalit, Problems, questions, and conjectures about mapping class groups, Proceedings of Symposia in Pure Mathematics, 102, (2019) https://doi.org/10.1090/pspum/102/01808.
- Dan Margalit, Automorphisms of the pants complex, Duke Math. J. 121 (2004), no. 3, 457–479. MR 2040283, DOI 10.1215/S0012-7094-04-12133-5
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149. MR 1714338, DOI 10.1007/s002220050343
- John D. McCarthy, Automorphisms of surface mapping class groups. A recent theorem of N. Ivanov, Invent. Math. 84 (1986), no. 1, 49–71. MR 830038, DOI 10.1007/BF01388732
- John D. McCarthy and Athanase Papadopoulos, Simplicial actions of mapping class groups, Handbook of Teichmüller theory. Volume III, IRMA Lect. Math. Theor. Phys., vol. 17, Eur. Math. Soc., Zürich, 2012, pp. 297–423. MR 2952767, DOI 10.4171/103-1/6
- Alan McLeay, Normal subgroups of mapping class groups of punctured surfaces, arxiv:1801.05209 (2018).
- Alan McLeay, Normal subgroups of the braid group and the metaconjecture of Ivanov, arxiv:1801.05209 (2018).
- R. Taylor McNeill, A New Filtration of the Magnus Kernel, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–Rice University. MR 3211445
- Lee Mosher, MSRI course on mapping class groups, Lecture notes (Fall 2007).
- Jakob Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927), no. 1, 189–358 (German). MR 1555256, DOI 10.1007/BF02421324
- Andrew Putman, The fundamental theorem of projective geometry, http://www3.nd.edu/~andyp/notes/FunThmProjGeom.pdf.
- Andrew Putman, A note on the connectivity of certain complexes associated to surfaces, Enseign. Math. (2) 54 (2008), no. 3-4, 287–301. MR 2478089
- Paul Schmutz Schaller, Mapping class groups of hyperbolic surfaces and automorphism groups of graphs, Compositio Math. 122 (2000), no. 3, 243–260. MR 1781329, DOI 10.1023/A:1002672721132
- Shane Scott, Automorphisms of some complexes, Ph.D. thesis, Georgia Institute of Technology, 2018.
- Kenneth J. Shackleton, Combinatorial rigidity in curve complexes and mapping class groups, Pacific J. Math. 230 (2007), no. 1, 217–232. MR 2318453, DOI 10.2140/pjm.2007.230.217
- Roger Tambekou Tchangang, Le groupe d’automorphismes du groupe modulaire, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 2, 19–31 (French, with English summary). MR 898929, DOI 10.5802/aif.1084
- Oswald Teichmüller, Veränderliche Riemannsche Flächen, Deutsche Math. 7 (1944), 344–359 (German). MR 18762
Bibliographic Information
- Tara E. Brendle
- Affiliation: School of Mathematics & Statistics, University Place, University of Glasgow, G12 8SQ, United Kingdom
- MR Author ID: 683339
- Email: tara.brendle@glasgow.ac.uk
- Dan Margalit
- Affiliation: School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, Georgia 30332
- MR Author ID: 706322
- Email: margalit@math.gatech.edu
- Received by editor(s): May 9, 2018
- Received by editor(s) in revised form: April 10, 2019
- Published electronically: August 27, 2019
- Additional Notes: This material is based upon work supported by the EPSRC under grant EP/J019593/1 and the National Science Foundation under Grant Nos. DMS - 1057874 and DMS - 1510556.
- © Copyright 2019 American Mathematical Society
- Journal: J. Amer. Math. Soc. 32 (2019), 1009-1070
- MSC (2010): Primary 20F36; Secondary 57M07
- DOI: https://doi.org/10.1090/jams/927
- MathSciNet review: 4013739