Stably irrational hypersurfaces of small slopes
HTML articles powered by AMS MathViewer
- by Stefan Schreieder;
- J. Amer. Math. Soc. 32 (2019), 1171-1199
- DOI: https://doi.org/10.1090/jams/928
- Published electronically: August 1, 2019
- HTML | PDF | Request permission
Abstract:
Let $k$ be an uncountable field of characteristic different from two. We show that a very general hypersurface $X\subset \mathbb {P}^{N+1}_k$ of dimension $N\geq 3$ and degree at least $\log _2N +2$ is not stably rational over the algebraic closure of $k$.References
- M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. (3) 25 (1972), 75–95. MR 321934, DOI 10.1112/plms/s3-25.1.75
- Aravind Asok, Rationality problems and conjectures of Milnor and Bloch-Kato, Compos. Math. 149 (2013), no. 8, 1312–1326. MR 3103066, DOI 10.1112/S0010437X13007021
- Arnaud Beauville, A very general sextic double solid is not stably rational, Bull. Lond. Math. Soc. 48 (2016), no. 2, 321–324. MR 3483069, DOI 10.1112/blms/bdv098
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 302652, DOI 10.2307/1970801
- J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) Proc. Sympos. Pure Math., vol. 58, Amer. Math. Soc., Providence, RI, 1995, pp. 1–64. MR 1327280, DOI 10.1090/pspum/058.1/1327280
- J.-L. Colliot-Thélène, Introduction to work of Hassett-Pirutka-Tschinkel and Schreieder, preprint, 2018, https://www.math.u-psud.fr/~colliot/HPT+Srevisited2Feb18.pdf.
- Jean-Louis Colliot-Thélène and Manuel Ojanguren, Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford, Invent. Math. 97 (1989), no. 1, 141–158 (French). MR 999316, DOI 10.1007/BF01850658
- Jean-Louis Colliot-Thélène and Alexei N. Skorobogatov, Groupe de Chow des zéro-cycles sur les fibrés en quadriques, $K$-Theory 7 (1993), no. 5, 477–500 (French, with English summary). MR 1255062, DOI 10.1007/BF00961538
- Jean-Louis Colliot-Thélène and Alena Pirutka, Hypersurfaces quartiques de dimension 3: non-rationalité stable, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 2, 371–397 (French, with English and French summaries). MR 3481353, DOI 10.24033/asens.2285
- Zh.-L. Kol′ë-Telèn and E. V. Piryutko, Cyclic covers that are not stably rational, Izv. Ross. Akad. Nauk Ser. Mat. 80 (2016), no. 4, 35–48 (Russian, with Russian summary); English transl., Izv. Math. 80 (2016), no. 4, 665–677. MR 3535357, DOI 10.4213/im8429
- Jean-Louis Colliot-Thélène and Claire Voisin, Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J. 161 (2012), no. 5, 735–801 (French, with English and French summaries). MR 2904092, DOI 10.1215/00127094-1548389
- Alberto Conte, Marina Marchisio, and Jacob P. Murre, On the unirationality of the quintic hypersurface containing a 3-dimensional linear space, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 142 (2008), 89–96 (2009) (English, with English and Italian summaries). MR 2527970
- Tommaso de Fernex, Birationally rigid hypersurfaces, Invent. Math. 192 (2013), no. 3, 533–566. MR 3049929, DOI 10.1007/s00222-012-0417-0
- Tommaso de Fernex, Erratum to: Birationally rigid hypersurfaces [ MR3049929], Invent. Math. 203 (2016), no. 2, 675–680. MR 3455160, DOI 10.1007/s00222-015-0618-4
- A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020, DOI 10.1007/BF02698644
- Richard Elman and T. Y. Lam, Pfister forms and $K$-theory of fields, J. Algebra 23 (1972), 181–213. MR 302739, DOI 10.1016/0021-8693(72)90054-3
- L. Fu and Z. Tian, 2-cycles sur les hypersurfaces cubiques de dimension 5, arXiv:1801.03995, 2018.
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Brendan Hassett, Andrew Kresch, and Yuri Tschinkel, Stable rationality and conic bundles, Math. Ann. 365 (2016), no. 3-4, 1201–1217. MR 3521088, DOI 10.1007/s00208-015-1292-y
- Brendan Hassett, Alena Pirutka, and Yuri Tschinkel, Stable rationality of quadric surface bundles over surfaces, Acta Math. 220 (2018), no. 2, 341–365. MR 3849287, DOI 10.4310/ACTA.2018.v220.n2.a4
- Brendan Hassett, Alena Pirutka, and Yuri Tschinkel, A very general quartic double fourfold is not stably rational, Algebr. Geom. 6 (2019), no. 1, 64–75. MR 3904799, DOI 10.14231/ag-2019-004
- Luc Illusie and Michael Temkin, Exposé X. Gabber’s modification theorem (log smooth case), Astérisque 363-364 (2014), 167–212. Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. MR 3329779
- V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.) 86(128) (1971), 140–166 (Russian). MR 291172
- Nikita A. Karpenko and Alexander S. Merkurjev, On standard norm varieties, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 1, 175–214 (2013) (English, with English and French summaries). MR 3087392, DOI 10.24033/asens.2187
- Moritz Kerz, The Gersten conjecture for Milnor $K$-theory, Invent. Math. 175 (2009), no. 1, 1–33. MR 2461425, DOI 10.1007/s00222-008-0144-8
- János Kollár, Nonrational hypersurfaces, J. Amer. Math. Soc. 8 (1995), no. 1, 241–249. MR 1273416, DOI 10.1090/S0894-0347-1995-1273416-8
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- M. Kontsevich and Yu. Tschinkel, Specialization of birational types, arXiv:1708.05699, 2017.
- T. Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005. MR 2104929, DOI 10.1090/gsm/067
- Alexander Merkurjev, Unramified elements in cycle modules, J. Lond. Math. Soc. (2) 78 (2008), no. 1, 51–64. MR 2427051, DOI 10.1112/jlms/jdn011
- J. P. Murre, Reduction of the proof of the non-rationality of a non-singular cubic threefold to a result of Mumford, Compositio Math. 27 (1973), 63–82. MR 352089
- J. Nicaise and E. Shinder, The motivic nearby fiber and degeneration of stable rationality, arXiv:1708.027901, 2017.
- T. Okada, Stable rationality of cyclic covers of projective spaces, arXiv:1604.08417, 2016.
- A. V. Pukhlikov, Birational isomorphisms of four-dimensional quintics, Invent. Math. 87 (1987), no. 2, 303–329. MR 870730, DOI 10.1007/BF01389417
- Aleksandr V. Pukhlikov, Birational automorphisms of Fano hypersurfaces, Invent. Math. 134 (1998), no. 2, 401–426. MR 1650332, DOI 10.1007/s002220050269
- Jean-Pierre Serre, Galois cohomology, Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author. MR 1466966, DOI 10.1007/978-3-642-59141-9
- Stefan Schreieder, On the rationality problem for quadric bundles, Duke Math. J. 168 (2019), no. 2, 187–223. MR 3909896, DOI 10.1215/00127094-2018-0041
- Stefan Schreieder, Quadric surface bundles over surfaces and stable rationality, Algebra Number Theory 12 (2018), no. 2, 479–490. MR 3803711, DOI 10.2140/ant.2018.12.479
- Burt Totaro, Hypersurfaces that are not stably rational, J. Amer. Math. Soc. 29 (2016), no. 3, 883–891. MR 3486175, DOI 10.1090/jams/840
- Vladimir Voevodsky, Motivic cohomology with $\textbf {Z}/2$-coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 59–104. MR 2031199, DOI 10.1007/s10240-003-0010-6
- Claire Voisin, On integral Hodge classes on uniruled or Calabi-Yau threefolds, Moduli spaces and arithmetic geometry, Adv. Stud. Pure Math., vol. 45, Math. Soc. Japan, Tokyo, 2006, pp. 43–73. MR 2306166, DOI 10.2969/aspm/04510043
- Claire Voisin, Some aspects of the Hodge conjecture, Jpn. J. Math. 2 (2007), no. 2, 261–296. MR 2342587, DOI 10.1007/s11537-007-0639-x
- Claire Voisin, Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal, J. Algebraic Geom. 22 (2013), no. 1, 141–174. MR 2993050, DOI 10.1090/S1056-3911-2012-00597-9
- Claire Voisin, Unirational threefolds with no universal codimension $2$ cycle, Invent. Math. 201 (2015), no. 1, 207–237. MR 3359052, DOI 10.1007/s00222-014-0551-y
Bibliographic Information
- Stefan Schreieder
- Affiliation: Mathematisches Institut, LMU München, Theresienstr. 39, 80333 München, Germany
- MR Author ID: 982064
- Email: schreieder@math.lmu.de
- Received by editor(s): February 14, 2018
- Received by editor(s) in revised form: September 10, 2018, April 27, 2019, April 30, 2019, and May 23, 2019
- Published electronically: August 1, 2019
- © Copyright 2019 American Mathematical Society
- Journal: J. Amer. Math. Soc. 32 (2019), 1171-1199
- MSC (2010): Primary 14J70, 14E08; Secondary 14M20, 14C30
- DOI: https://doi.org/10.1090/jams/928
- MathSciNet review: 4013741