Effective equidistribution and property $(\tau )$
HTML articles powered by AMS MathViewer
- by M. Einsiedler, G. Margulis, A. Mohammadi and A. Venkatesh
- J. Amer. Math. Soc. 33 (2020), 223-289
- DOI: https://doi.org/10.1090/jams/930
- Published electronically: October 2, 2019
- HTML | PDF | Request permission
Abstract:
We prove a quantitative equidistribution statement for adelic homogeneous subsets whose stabilizer is maximal and semisimple. Fixing the ambient space, the statement is uniform in all parameters.
We explain how this implies certain equidistribution theorems which, even in a qualitative form, are not accessible to measure-classification theorems. As another application, we describe another proof of property $(\tau )$ for arithmetic groups.
References
- Ricardo Baeza, Quadratic forms over semilocal rings, Lecture Notes in Mathematics, Vol. 655, Springer-Verlag, Berlin-New York, 1978. MR 0491773, DOI 10.1007/BFb0070341
- Mikhail Belolipetsky, Counting maximal arithmetic subgroups, Duke Math. J. 140 (2007), no. 1, 1–33. With an appendix by Jordan Ellenberg and Akshay Venkatesh. MR 2355066, DOI 10.1215/S0012-7094-07-14011-0
- Joseph Bernstein and Andre Reznikov, Sobolev norms of automorphic functionals, Int. Math. Res. Not. 40 (2002), 2155–2174. MR 1930758, DOI 10.1155/S1073792802101139
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Armand Borel, Some finiteness properties of adele groups over number fields, Inst. Hautes Études Sci. Publ. Math. 16 (1963), 5–30. MR 202718, DOI 10.1007/BF02684289
- Armand Borel and Gopal Prasad, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 119–171. MR 1019963, DOI 10.1007/BF02698843
- A. Borel and J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95–104 (French). MR 294349, DOI 10.1007/BF01404653
- Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712, DOI 10.1007/BF02684375
- Nicolas Bourbaki, Éléments de mathématique: groupes et algèbres de Lie, Masson, Paris, 1982 (French). Chapitre 9. Groupes de Lie réels compacts. [Chapter 9. Compact real Lie groups]. MR 682756
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- M. Burger and P. Sarnak, Ramanujan duals. II, Invent. Math. 106 (1991), no. 1, 1–11. MR 1123369, DOI 10.1007/BF01243900
- Laurent Clozel, Démonstration de la conjecture $\tau$, Invent. Math. 151 (2003), no. 2, 297–328 (French). MR 1953260, DOI 10.1007/s00222-002-0253-8
- Brian Conrad, Reductive group schemes, Autour des schémas en groupes. Vol. I, Panor. Synthèses, vol. 42/43, Soc. Math. France, Paris, 2014, pp. 93–444 (English, with English and French summaries). MR 3362641
- Brian Conrad, personal communication, August 19, 2017.
- Bruce N. Cooperstein, Minimal degree for a permutation representation of a classical group, Israel J. Math. 30 (1978), no. 3, 213–235. MR 506701, DOI 10.1007/BF02761072
- M. Cowling, U. Haagerup, and R. Howe, Almost $L^2$ matrix coefficients, J. Reine Angew. Math. 387 (1988), 97–110. MR 946351
- Claude Chevalley, Certains schémas de groupes semi-simples, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1995, pp. Exp. No. 219, 219–234 (French). MR 1611814
- S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 91–137. MR 1237827
- Schémas en groupes. III: Structure des schémas en groupes réductifs, Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274460
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368, DOI 10.1017/CBO9780511470882
- Manfred Einsiedler, Ratner’s theorem on $\textrm {SL}(2,\Bbb R)$-invariant measures, Jahresber. Deutsch. Math.-Verein. 108 (2006), no. 3, 143–164. MR 2265534
- Manfred Einsiedler and Anish Ghosh, Rigidity of measures invariant under semisimple groups in positive characteristic, Proc. Lond. Math. Soc. (3) 100 (2010), no. 1, 249–268. MR 2578474, DOI 10.1112/plms/pdp029
- Manfred Einsiedler, Elon Lindenstrauss, Philippe Michel, and Akshay Venkatesh, Distribution of periodic torus orbits on homogeneous spaces, Duke Math. J. 148 (2009), no. 1, 119–174. MR 2515103, DOI 10.1215/00127094-2009-023
- M. Einsiedler, G. Margulis, and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Invent. Math. 177 (2009), no. 1, 137–212. MR 2507639, DOI 10.1007/s00222-009-0177-7
- Manfred Einsiedler, René Rühr, and Philipp Wirth, Distribution of shapes of orthogonal lattices, Ergodic Theory Dynam. Systems 39 (2019), no. 6, 1531–1607. MR 3944098, DOI 10.1017/etds.2017.78
- Jordan S. Ellenberg and Akshay Venkatesh, Local-global principles for representations of quadratic forms, Invent. Math. 171 (2008), no. 2, 257–279. MR 2367020, DOI 10.1007/s00222-007-0077-7
- Alex Eskin and Hee Oh, Representations of integers by an invariant polynomial and unipotent flows, Duke Math. J. 135 (2006), no. 3, 481–506. MR 2272974, DOI 10.1215/S0012-7094-06-13533-0
- Alex Eskin, Gregory Margulis, and Shahar Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2) 147 (1998), no. 1, 93–141. MR 1609447, DOI 10.2307/120984
- Tobias Finis and Erez Lapid, An approximation principle for congruence subgroups, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 5, 1075–1138. MR 3790064, DOI 10.4171/JEMS/783
- Alex Gorodnik, François Maucourant, and Hee Oh, Manin’s and Peyre’s conjectures on rational points and adelic mixing, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 3, 383–435 (English, with English and French summaries). MR 2482443, DOI 10.24033/asens.2071
- Alex Gorodnik and Hee Oh, Rational points on homogeneous varieties and equidistribution of adelic periods, Geom. Funct. Anal. 21 (2011), no. 2, 319–392. With an appendix by Mikhail Borovoi. MR 2795511, DOI 10.1007/s00039-011-0113-z
- Marvin J. Greenberg, Strictly local solutions of Diophantine equations, Pacific J. Math. 51 (1974), 143–153. MR 351994, DOI 10.2140/pjm.1974.51.143
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1343976, DOI 10.1090/surv/043
- N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48. MR 185016, DOI 10.1007/BF02684396
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654, DOI 10.1007/BFb0058988
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 0209390
- Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341, DOI 10.1017/CBO9780511629235
- Dmitry Kleinbock and George Tomanov, Flows on $S$-arithmetic homogeneous spaces and applications to metric Diophantine approximation, Comment. Math. Helv. 82 (2007), no. 3, 519–581. MR 2314053, DOI 10.4171/CMH/102
- Robert E. Kottwitz, Tamagawa numbers, Ann. of Math. (2) 127 (1988), no. 3, 629–646. MR 942522, DOI 10.2307/2007007
- Michael J. Larsen and Richard Pink, Finite subgroups of algebraic groups, J. Amer. Math. Soc. 24 (2011), no. 4, 1105–1158. MR 2813339, DOI 10.1090/S0894-0347-2011-00695-4
- Martin W. Liebeck and Jan Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. London Math. Soc. (3) 55 (1987), no. 2, 299–330. MR 896223, DOI 10.1093/plms/s3-55_{2}.299
- G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math. 116 (1994), no. 1-3, 347–392. MR 1253197, DOI 10.1007/BF01231565
- Shahar Mozes and Nimish Shah, On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems 15 (1995), no. 1, 149–159. MR 1314973, DOI 10.1017/S0143385700008282
- Madhav V. Nori, On subgroups of $\textrm {GL}_n(\textbf {F}_p)$, Invent. Math. 88 (1987), no. 2, 257–275. MR 880952, DOI 10.1007/BF01388909
- Hee Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J. 113 (2002), no. 1, 133–192. MR 1905394, DOI 10.1215/S0012-7094-02-11314-3
- Richard Pink, Compact subgroups of linear algebraic groups, J. Algebra 206 (1998), no. 2, 438–504. MR 1637068, DOI 10.1006/jabr.1998.7439
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- Gopal Prasad, Volumes of $S$-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 91–117. With an appendix by Moshe Jarden and the author. MR 1019962, DOI 10.1007/BF02698841
- Gopal Prasad and Jiu-Kang Yu, On quasi-reductive group schemes, J. Algebraic Geom. 15 (2006), no. 3, 507–549. With an appendix by Brian Conrad. MR 2219847, DOI 10.1090/S1056-3911-06-00422-X
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234, DOI 10.1007/978-3-642-86426-1
- Marina Ratner, On measure rigidity of unipotent subgroups of semisimple groups, Acta Math. 165 (1990), no. 3-4, 229–309. MR 1075042, DOI 10.1007/BF02391906
- Marina Ratner, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134 (1991), no. 3, 545–607. MR 1135878, DOI 10.2307/2944357
- Marina Ratner, On the $p$-adic and $S$-arithmetic generalizations of Raghunathan’s conjectures, Lie groups and ergodic theory (Mumbai, 1996) Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 167–202. MR 1699365
- Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 1–15. MR 0182610
- Jean-Pierre Serre, Lie algebras and Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1965. Lectures given at Harvard University, 1964. MR 0218496
- Jean-Pierre Serre, Exemples de plongements des groupes $\textrm {PSL}_2(\textbf {F}_p)$ dans des groupes de Lie simples, Invent. Math. 124 (1996), no. 1-3, 525–562 (French). MR 1369427, DOI 10.1007/s002220050062
- Robert Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56. MR 155937, DOI 10.1017/S0027763000011016
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
- Bernd Ulrich and Clarence W. Wilkerson, Field degrees and multiplicities for non-integral extensions, Illinois J. Math. 51 (2007), no. 1, 299–311. MR 2346199
Bibliographic Information
- M. Einsiedler
- Affiliation: Departement Mathematik, ETH Zürich, Rämistrasse 101, 8092, Zürich, Switzerland
- MR Author ID: 636562
- Email: manfred.einsiedler@math.ethz.ch
- G. Margulis
- Affiliation: Department of Mathematics, Yale University, P.O. Box 208283, New Haven, Connecticut 06520-8283
- MR Author ID: 196455
- Email: margulis@math.yale.edu
- A. Mohammadi
- Affiliation: Department of Mathematics, UC San Diego, 9500 Gilman Drive, La Jolla, California 92093
- MR Author ID: 886399
- Email: ammohammadi@ucsd.edu
- A. Venkatesh
- Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
- MR Author ID: 693009
- Email: akshay@math.stanford.edu
- Received by editor(s): March 31, 2015
- Received by editor(s) in revised form: August 28, 2017, October 21, 2018, and June 21, 2019
- Published electronically: October 2, 2019
- Additional Notes: The first author acknowledges support from the SNF (Grant 200021-127145 and 200021-152819)
The second author acknowledges support from the NSF (Grant 1265695)
The third author acknowledges support from the NSF and Alfred P. Sloan Research Fellowship
The fourth author acknowledges support from the NSF and the Packard foundation - © Copyright 2019 American Mathematical Society
- Journal: J. Amer. Math. Soc. 33 (2020), 223-289
- MSC (2010): Primary 11E99, 37A17, 37A45; Secondary 22E55
- DOI: https://doi.org/10.1090/jams/930
- MathSciNet review: 4066475