On the remodeling conjecture for toric Calabi-Yau 3-orbifolds
HTML articles powered by AMS MathViewer
- by Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong;
- J. Amer. Math. Soc. 33 (2020), 135-222
- DOI: https://doi.org/10.1090/jams/934
- Published electronically: November 1, 2019
- HTML | PDF | Request permission
Abstract:
The Remodeling Conjecture proposed by Bouchard-Klemm-Mariño-Pasquetti (BKMP) relates the A-model open and closed topological string amplitudes (the all genus open and closed Gromov-Witten invariants) of a semiprojective toric Calabi-Yau 3-manifold/3-orbifold to the Eynard-Orantin invariants of its mirror curve. It is an all genus open-closed mirror symmetry for toric Calabi-Yau 3-manifolds/3-orbifolds. In this paper, we present a proof of the BKMP Remodeling Conjecture for all genus open-closed orbifold Gromov-Witten invariants of an arbitrary semiprojective toric Calabi-Yau 3-orbifold relative to an outer framed Aganagic-Vafa Lagrangian brane. We also prove the conjecture in the closed string sector at all genera.References
- Dan Abramovich and Barbara Fantechi, Orbifold techniques in degeneration formulas, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 2, 519–579. MR 3559610
- Dan Abramovich, Tom Graber, and Angelo Vistoli, Algebraic orbifold quantum products, Orbifolds in mathematics and physics (Madison, WI, 2001) Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 1–24. MR 1950940, DOI 10.1090/conm/310/05397
- Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337–1398. MR 2450211, DOI 10.1353/ajm.0.0017
- Mina Aganagic, Vincent Bouchard, and Albrecht Klemm, Topological strings and (almost) modular forms, Comm. Math. Phys. 277 (2008), no. 3, 771–819. MR 2365453, DOI 10.1007/s00220-007-0383-3
- Mina Aganagic, Albrecht Klemm, Marcos Mariño, and Cumrun Vafa, The topological vertex, Comm. Math. Phys. 254 (2005), no. 2, 425–478. MR 2117633, DOI 10.1007/s00220-004-1162-z
- Mina Aganagic, Albrecht Klemm, and Cumrun Vafa, Disk instantons, mirror symmetry and the duality web, Z. Naturforsch. A 57 (2002), no. 1-2, 1–28. MR 1906661, DOI 10.1515/zna-2002-9-1001
- M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, arXiv:hep-th/0012041.
- Victor V. Batyrev and David A. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J. 75 (1994), no. 2, 293–338. MR 1290195, DOI 10.1215/S0012-7094-94-07509-1
- M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993), no. 2-3, 279–304. MR 1240687, DOI 10.1016/0550-3213(93)90548-4
- M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994), no. 2, 311–427. MR 1301851, DOI 10.1007/BF02099774
- Lev A. Borisov, Linda Chen, and Gregory G. Smith, The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc. 18 (2005), no. 1, 193–215. MR 2114820, DOI 10.1090/S0894-0347-04-00471-0
- Vincent Bouchard, Andrei Catuneanu, Olivier Marchal, and Piotr Sułkowski, The remodeling conjecture and the Faber-Pandharipande formula, Lett. Math. Phys. 103 (2013), no. 1, 59–77. MR 3004817, DOI 10.1007/s11005-012-0588-z
- Vincent Bouchard, Albrecht Klemm, Marcos Mariño, and Sara Pasquetti, Remodeling the B-model, Comm. Math. Phys. 287 (2009), no. 1, 117–178. MR 2480744, DOI 10.1007/s00220-008-0620-4
- Vincent Bouchard, Albrecht Klemm, Marcos Mariño, and Sara Pasquetti, Topological open strings on orbifolds, Comm. Math. Phys. 296 (2010), no. 3, 589–623. MR 2628817, DOI 10.1007/s00220-010-1020-0
- Jeff Brown, Gromov-Witten invariants of toric fibrations, Int. Math. Res. Not. IMRN 19 (2014), 5437–5482. MR 3267376, DOI 10.1093/imrn/rnt030
- Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), no. 1, 21–74. MR 1115626, DOI 10.1016/0550-3213(91)90292-6
- Sergio Cecotti and Cumrun Vafa, Massive orbifolds, Modern Phys. Lett. A 7 (1992), no. 19, 1715–1723. MR 1168619, DOI 10.1142/S0217732392001415
- Kwokwai Chan, Siu-Cheong Lau, and Hsian-Hua Tseng, Enumerative meaning of mirror maps for toric Calabi-Yau manifolds, Adv. Math. 244 (2013), 605–625. MR 3077883, DOI 10.1016/j.aim.2013.05.018
- Kwokwai Chan, Cheol-Hyun Cho, Siu-Cheong Lau, and Hsian-Hua Tseng, Gross fibrations, SYZ mirror symmetry, and open Gromov-Witten invariants for toric Calabi-Yau orbifolds, J. Differential Geom. 103 (2016), no. 2, 207–288. MR 3504949
- H.-L. Chang, S. Guo, and J. Li, BCOV’s Feynman rule of quintic $3$-folds, arXiv:1810:00394.
- H.-L. Chang, S. Guo, W.-P. Li, and J. Zhou, Genus one GW invariants of quintic threefold via MSP localization, arXiv:1711.10118, to appear in Int. Math. Res. Not.
- Lin Chen, Bouchard-Klemm-Marino-Pasquetti conjecture for $\Bbb C^3$, Topological recursion and its influence in analysis, geometry, and topology, Proc. Sympos. Pure Math., vol. 100, Amer. Math. Soc., Providence, RI, 2018, pp. 83–102. MR 3840131, DOI 10.1090/pspum/100/03
- Weimin Chen and Yongbin Ruan, Orbifold Gromov-Witten theory, Orbifolds in mathematics and physics (Madison, WI, 2001) Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 25–85. MR 1950941, DOI 10.1090/conm/310/05398
- Weimin Chen and Yongbin Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), no. 1, 1–31. MR 2104605, DOI 10.1007/s00220-004-1089-4
- Daewoong Cheong, Ionuţ Ciocan-Fontanine, and Bumsig Kim, Orbifold quasimap theory, Math. Ann. 363 (2015), no. 3-4, 777–816. MR 3412343, DOI 10.1007/s00208-015-1186-z
- I. Ciocan-Fontanine and B. Kim, Quasimap wall-crossing and mirror symmetry, arXiv:1611.05023.
- Tom Coates, Alessio Corti, Hiroshi Iritani, and Hsian-Hua Tseng, A mirror theorem for toric stacks, Compos. Math. 151 (2015), no. 10, 1878–1912. MR 3414388, DOI 10.1112/S0010437X15007356
- T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, Hodge-Theoretic Mirror Symmetry for Toric Stacks, arXiv:1606.07254, to appear in Journal of Differential Geometry.
- Tom Coates and Hiroshi Iritani, On the convergence of Gromov-Witten potentials and Givental’s formula, Michigan Math. J. 64 (2015), no. 3, 587–631. MR 3394261, DOI 10.1307/mmj/1441116660
- Tom Coates and Hiroshi Iritani, A Fock sheaf for Givental quantization, Kyoto J. Math. 58 (2018), no. 4, 695–864. MR 3880240, DOI 10.1215/21562261-2017-0036
- Kevin Costello, Renormalization and effective field theory, Mathematical Surveys and Monographs, vol. 170, American Mathematical Society, Providence, RI, 2011. MR 2778558, DOI 10.1090/surv/170
- K.J. Costello and S. Li, Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model, arXiv:1201.4501.
- K.J. Costello and S. Li, Quantization of open-closed BCOV theory, I, arXiv:1505.06703.
- David A. Cox and Sheldon Katz, Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, vol. 68, American Mathematical Society, Providence, RI, 1999. MR 1677117, DOI 10.1090/surv/068
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322, DOI 10.1090/gsm/124
- Duiliu-Emanuel Diaconescu and Bogdan Florea, Localization and gluing of topological amplitudes, Comm. Math. Phys. 257 (2005), no. 1, 119–149. MR 2163571, DOI 10.1007/s00220-005-1323-8
- Charles F. Doran and Matt Kerr, Algebraic $K$-theory of toric hypersurfaces, Commun. Number Theory Phys. 5 (2011), no. 2, 397–600. MR 2851155, DOI 10.4310/CNTP.2011.v5.n2.a3
- Boris Dubrovin, Geometry of $2$D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993) Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996, pp. 120–348. MR 1397274, DOI 10.1007/BFb0094793
- P. Dunin-Barkowski, N. Orantin, S. Shadrin, and L. Spitz, Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys. 328 (2014), no. 2, 669–700. MR 3199996, DOI 10.1007/s00220-014-1887-2
- B. Eynard, Intersection number of spectral curves, arXiv:1104.0176.
- B. Eynard, Invariants of spectral curves and intersection theory of moduli spaces of complex curves, Commun. Number Theory Phys. 8 (2014), no. 3, 541–588. MR 3282995, DOI 10.4310/CNTP.2014.v8.n3.a4
- B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007), no. 2, 347–452. MR 2346575, DOI 10.4310/CNTP.2007.v1.n2.a4
- B. Eynard and N. Orantin, Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion, a proof of the BKMP conjecture, Comm. Math. Phys. 337 (2015), no. 2, 483–567. MR 3339157, DOI 10.1007/s00220-015-2361-5
- Bertrand Eynard, Nicolas Orantin, and Marcos Mariño, Holomorphic anomaly and matrix models, J. High Energy Phys. 6 (2007), 058, 20. MR 2326593, DOI 10.1088/1126-6708/2007/06/058
- John D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973. MR 335789
- B. Fang, C.-C.M. Liu, and H.-H. Tseng, Open-closed Gromov-Witten invariants of 3-dimensional Calabi-Yau smooth toric DM stacks, arXiv:1212.6073.
- B. Fang, C.-C.M. Liu, and Z. Zong, All Genus Open-Closed Mirror Symmetry for Affine Toric Calabi-Yau 3-Orbifolds, arXiv:1310.4818, to appear in Algebr. Geom.
- Barbara Fantechi, Etienne Mann, and Fabio Nironi, Smooth toric Deligne-Mumford stacks, J. Reine Angew. Math. 648 (2010), 201–244. MR 2774310, DOI 10.1515/CRELLE.2010.084
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- Alexander B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 13 (1996), 613–663. MR 1408320, DOI 10.1155/S1073792896000414
- Alexander Givental, Elliptic Gromov-Witten invariants and the generalized mirror conjecture, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 107–155. MR 1672116
- Alexander Givental, A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996) Progr. Math., vol. 160, Birkhäuser Boston, Boston, MA, 1998, pp. 141–175. MR 1653024
- Alexander B. Givental, Semisimple Frobenius structures at higher genus, Internat. Math. Res. Notices 23 (2001), 1265–1286. MR 1866444, DOI 10.1155/S1073792801000605
- Alexander B. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), no. 4, 551–568, 645 (English, with English and Russian summaries). Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. MR 1901075, DOI 10.17323/1609-4514-2001-1-4-551-568
- Amin Gholampour and Hsian-Hua Tseng, On computations of genus 0 two-point descendant Gromov-Witten invariants, Michigan Math. J. 62 (2013), no. 4, 753–768. MR 3160540, DOI 10.1307/mmj/1387226163
- T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2, 487–518. MR 1666787, DOI 10.1007/s002220050293
- S. Guo, F. Janda, and Y. Ruan, A mirror theorem for genus two Gromov-Witten invariants of quintic threefolds, arXiv:1709.07392.
- K. Hori and C. Vafa, Mirror symmetry, arXiv:0002222.
- M.-x. Huang, A. Klemm, and S. Quackenbush, Topological string theory on compact Calabi-Yau: modularity and boundary conditions, Homological mirror symmetry, Lecture Notes in Phys., vol. 757, Springer, Berlin, 2009, pp. 45–102. MR 2596635
- Hiroshi Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), no. 3, 1016–1079. MR 2553377, DOI 10.1016/j.aim.2009.05.016
- Yunfeng Jiang, The orbifold cohomology ring of simplicial toric stack bundles, Illinois J. Math. 52 (2008), no. 2, 493–514. MR 2524648
- Sheldon Katz and Chiu-Chu Melissa Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys. 5 (2001), no. 1, 1–49. MR 1894336, DOI 10.4310/ATMP.2001.v5.n1.a1
- Bumsig Kim and Hyenho Lho, Mirror theorem for elliptic quasimap invariants, Geom. Topol. 22 (2018), no. 3, 1459–1481. MR 3780438, DOI 10.2140/gt.2018.22.1459
- Yukiko Konishi and Satoshi Minabe, Local B-model and mixed Hodge structure, Adv. Theor. Math. Phys. 14 (2010), no. 4, 1089–1145. MR 2821394, DOI 10.4310/ATMP.2010.v14.n4.a2
- Y.-P. Lee and R. Pandharipande, Frobenius manifolds, Gromov-Witten theory, and Virasoro constraints. https://people.math.ethz.ch/~rahul/Part1.ps, https://people.math.ethz.ch/~rahul/Part2.ps
- Jun Li, Chiu-Chu Melissa Liu, Kefeng Liu, and Jian Zhou, A mathematical theory of the topological vertex, Geom. Topol. 13 (2009), no. 1, 527–621. MR 2469524, DOI 10.2140/gt.2009.13.527
- Bong H. Lian, Kefeng Liu, and Shing-Tung Yau, Mirror principle. I, Asian J. Math. 1 (1997), no. 4, 729–763. MR 1621573, DOI 10.4310/AJM.1997.v1.n4.a5
- Bong H. Lian, Kefeng Liu, and Shing-Tung Yau, Mirror principle. II, Asian J. Math. 3 (1999), no. 1, 109–146. Sir Michael Atiyah: a great mathematician of the twentieth century. MR 1701925, DOI 10.4310/AJM.1999.v3.n1.a6
- Bong H. Lian, Kefeng Liu, and Shing-Tung Yau, Mirror principle. III, Asian J. Math. 3 (1999), no. 4, 771–800. MR 1797578, DOI 10.4310/AJM.1999.v3.n4.a4
- C.-C. M. Liu, Moduli of $J$-holomorphic curves with Lagrangian boundary conditions and open Gromov-Witten invariants for an $S^1$-equivariant pair, arXiv:math/0211388.
- Chiu-Chu Melissa Liu, Localization in Gromov-Witten theory and orbifold Gromov-Witten theory, Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM), vol. 25, Int. Press, Somerville, MA, 2013, pp. 353–425. MR 3184181
- Marcos Mariño, Open string amplitudes and large order behavior in topological string theory, J. High Energy Phys. 3 (2008), 060, 34. MR 2391060, DOI 10.1088/1126-6708/2008/03/060
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285. MR 2264664, DOI 10.1112/S0010437X06002302
- D. Maulik, A. Oblomkov, A. Okounkov, and R. Pandharipande, Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math. 186 (2011), no. 2, 435–479. MR 2845622, DOI 10.1007/s00222-011-0322-y
- G. Mikhalkin, Real algebraic curves, the moment map and amoebas, Ann. of Math. (2) 151 (2000), no. 1, 309–326. MR 1745011, DOI 10.2307/121119
- Takeo Nishinou and Bernd Siebert, Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006), no. 1, 1–51. MR 2259922, DOI 10.1215/S0012-7094-06-13511-1
- D. O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 240–262 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(246) (2004), 227–248. MR 2101296
- D. O. Orlov, Triangulated categories of singularities, and equivalences between Landau-Ginzburg models, Mat. Sb. 197 (2006), no. 12, 117–132 (Russian, with Russian summary); English transl., Sb. Math. 197 (2006), no. 11-12, 1827–1840. MR 2437083, DOI 10.1070/SM2006v197n12ABEH003824
- Dustin Ross, Localization and gluing of orbifold amplitudes: the Gromov-Witten orbifold vertex, Trans. Amer. Math. Soc. 366 (2014), no. 3, 1587–1620. MR 3145743, DOI 10.1090/S0002-9947-2013-05835-7
- Dustin Ross and Zhengyu Zong, The gerby Gopakumar-Mariño-Vafa formula, Geom. Topol. 17 (2013), no. 5, 2935–2976. MR 3190303, DOI 10.2140/gt.2013.17.2935
- Dustin Ross and Zhengyu Zong, Cyclic Hodge integrals and loop Schur functions, Adv. Math. 285 (2015), 1448–1486. MR 3406532, DOI 10.1016/j.aim.2015.08.023
- Dustin Ross, On the Gromov-Witten/Donaldson-Thomas correspondence and Ruan’s conjecture for Calabi-Yau 3-orbifolds, Comm. Math. Phys. 340 (2015), no. 2, 851–864. MR 3397033, DOI 10.1007/s00220-015-2438-1
- Yongbin Ruan, Stringy geometry and topology of orbifolds, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000) Contemp. Math., vol. 312, Amer. Math. Soc., Providence, RI, 2002, pp. 187–233. MR 1941583, DOI 10.1090/conm/312/05384
- Yongbin Ruan, The cohomology ring of crepant resolutions of orbifolds, Gromov-Witten theory of spin curves and orbifolds, Contemp. Math., vol. 403, Amer. Math. Soc., Providence, RI, 2006, pp. 117–126. MR 2234886, DOI 10.1090/conm/403/07597
- Constantin Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012), no. 3, 525–588. MR 2917177, DOI 10.1007/s00222-011-0352-5
- Hsian-Hua Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), no. 1, 1–81. MR 2578300, DOI 10.2140/gt.2010.14.1
- H.-H. Tseng and D. Wang, Seidel Representations and quantum cohomology of toric stacks, arXiv:1211.3204.
- Satoshi Yamaguchi and Shing-Tung Yau, Topological string partition functions as polynomials, J. High Energy Phys. 7 (2004), 047, 20. MR 2095047, DOI 10.1088/1126-6708/2004/07/047
- Eric Zaslow, Topological orbifold models and quantum cohomology rings, Comm. Math. Phys. 156 (1993), no. 2, 301–331. MR 1233848, DOI 10.1007/BF02098485
- J. Zhou, Local Mirror Symmetry for One-Legged Topological Vertex, arXiv:0910.4320; Local Mirror Symmetry for the Topological Vertex, arXiv:0911.2343.
- J. Zhou, Open string invariants and mirror curve of the resolved conifold, arXiv:1001.0447.
- Jie Zhou, Arithmetic Properties of Moduli Spaces and Topological String Partition Functions of Some Calabi-Yau Threefolds, ProQuest LLC, Ann Arbor, MI, 2014. Thesis (Ph.D.)–Harvard University. MR 3251364
- Shengmao Zhu, On a proof of the Bouchard-Sulkowski conjecture, Math. Res. Lett. 22 (2015), no. 2, 633–643. MR 3342249, DOI 10.4310/MRL.2015.v22.n2.a14
- Aleksey Zinger, The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009), no. 3, 691–737. MR 2505298, DOI 10.1090/S0894-0347-08-00625-5
- Zhengyu Zong, Generalized Mariño-Vafa formula and local Gromov-Witten theory of orbi-curves, J. Differential Geom. 100 (2015), no. 1, 161–190. MR 3326577
- Zhengyu Zong, Equivariant Gromov-Witten Theory of GKM Orbifolds, ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)–Columbia University. MR 3312922
Bibliographic Information
- Bohan Fang
- Affiliation: Beijing International Center for Mathematical Research, Peking University, 5 Yiheyuan Road, Beijing 100871, People’s Republic of China
- MR Author ID: 831818
- Email: bohanfang@gmail.com
- Chiu-Chu Melissa Liu
- Affiliation: Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
- MR Author ID: 691648
- Email: ccliu@math.columbia.edu
- Zhengyu Zong
- Affiliation: Yau Mathematical Sciences Center, Tsinghua University, Jin Chun Yuan West Building, Tsinghua University, Haidian District, Beijing 100084, People’s Republic of China
- MR Author ID: 1056175
- Email: zyzong@mail.tsinghua.edu.cn
- Received by editor(s): March 31, 2018
- Received by editor(s) in revised form: June 20, 2019
- Published electronically: November 1, 2019
- Additional Notes: The first author was partially supported by a start-up grant at Peking University
The second author was partially supported by NSF grants DMS-1206667 and DMS-1159416
The third author was partially supported by the start-up grant at Tsinghua University - © Copyright 2019 American Mathematical Society
- Journal: J. Amer. Math. Soc. 33 (2020), 135-222
- MSC (2010): Primary 14N35, 15D35, 14J33
- DOI: https://doi.org/10.1090/jams/934
- MathSciNet review: 4066474