Cohomologie $p$-adique de la tour de Drinfeld$\colon$ le cas de la dimension $1$
HTML articles powered by AMS MathViewer
- by Pierre Colmez, Gabriel Dospinescu and Wiesława Nizioł;
- J. Amer. Math. Soc. 33 (2020), 311-362
- DOI: https://doi.org/10.1090/jams/935
- Published electronically: December 24, 2019
- HTML | PDF | Request permission
Abstract:
We compute the $p$-adic geometric étale cohomology of the coverings of the Drinfeld half-plane, and we show that, if the base field is $\mathbf {Q}_p$, this cohomology encodes the $p$-adic local Langlands correspondence for $2$-dimensional de Rham representations (of weight $0$ and $1$).References
- Matthew Baker, Sam Payne, and Joseph Rabinoff, Nonarchimedean geometry, tropicalization, and metrics on curves, Algebr. Geom. 3 (2016), no. 1, 63–105. MR 3455421, DOI 10.14231/AG-2016-004
- Peter Beyer, On Serre-duality for coherent sheaves on rigid-analytic spaces, Manuscripta Math. 93 (1997), no. 2, 219–245. MR 1464367, DOI 10.1007/BF02677468
- J.-F. Boutot and H. Carayol, Uniformisation $p$-adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfel′d, Astérisque 196-197 (1991), 7, 45–158 (1992) (French, with English summary). Courbes modulaires et courbes de Shimura (Orsay, 1987/1988). MR 1141456
- J.-F. Boutot and T. Zink, The $p$-adic uniformization of Shimura curves, preprint 2000, disponible à https://www.math.uni-bielefeld.de/~zink/p-adicuni.ps.
- Ana Caraiani, Matthew Emerton, Toby Gee, David Geraghty, Vytautas Paškūnas, and Sug Woo Shin, Patching and the $p$-adic local Langlands correspondence, Camb. J. Math. 4 (2016), no. 2, 197–287. MR 3529394, DOI 10.4310/CJM.2016.v4.n2.a2
- Henri Carayol, Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468 (French). MR 870690, DOI 10.24033/asens.1512
- H. Carayol, Nonabelian Lubin-Tate theory, Automorphic forms, Shimura varieties, and $L$-functions, Vol. II (Ann Arbor, MI, 1988) Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990, pp. 15–39. MR 1044827
- Bruno Chiarellotto, Duality in rigid analysis, $p$-adic analysis (Trento, 1989) Lecture Notes in Math., vol. 1454, Springer, Berlin, 1990, pp. 142–172. MR 1094850, DOI 10.1007/BFb0091137
- Laurent Clozel, On limit multiplicities of discrete series representations in spaces of automorphic forms, Invent. Math. 83 (1986), no. 2, 265–284. MR 818353, DOI 10.1007/BF01388963
- Robert F. Coleman, Reciprocity laws on curves, Compositio Math. 72 (1989), no. 2, 205–235. MR 1030142
- Robert Coleman and Adrian Iovita, The Frobenius and monodromy operators for curves and abelian varieties, Duke Math. J. 97 (1999), no. 1, 171–215. MR 1682268, DOI 10.1215/S0012-7094-99-09708-9
- Pierre Colmez, Périodes $p$-adiques des variétés abéliennes, Math. Ann. 292 (1992), no. 4, 629–644 (French). MR 1157318, DOI 10.1007/BF01444640
- Pierre Colmez, Intégration sur les variétés $p$-adiques, Astérisque 248 (1998), viii+155 (French, with English and French summaries). MR 1645429
- Pierre Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1 (2002), no. 3, 331–439 (French, with English and French summaries). MR 1956055, DOI 10.1017/S1474748002000099
- Pierre Colmez, Espaces vectoriels de dimension finie et représentations de de Rham, Astérisque 319 (2008), 117–186 (French, with English and French summaries). Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules. MR 2493217
- Pierre Colmez, Représentations de $\textrm {GL}_2(\mathbf Q_p)$ et $(\phi ,\Gamma )$-modules, Astérisque 330 (2010), 281–509 (French, with English and French summaries). MR 2642409
- Pierre Colmez, Correspondance de Langlands locale $p$-adique et changement de poids, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 3, 797–838. MR 3908766, DOI 10.4171/JEMS/851
- Pierre Colmez and Gabriel Dospinescu, Complétés universels de représentations de $\text {GL}_2(\Bbb {Q}_p)$, Algebra Number Theory 8 (2014), no. 6, 1447–1519 (French, with English and French summaries). MR 3267142, DOI 10.2140/ant.2014.8.1447
- P. Colmez, G. Dospinescu, and W. Nizioł, Cohomologie des courbes analytiques $p$-adiques, en préparation.
- Pierre Colmez, Gabriel Dospinescu, and Wiesława Nizioł, Cohomology of p-adic Stein spaces, Inventiones mathematicae , posted on (09 Dec 2019)., DOI 10.1007/s00222-019-00923-z
- P. Colmez, G. Dospinescu, and W. Nizioł, Cohomologie de la tour de Drinfeld et correspondance de Langlands locale $p$-adique en famille, en préparation.
- Pierre Colmez, Gabriel Dospinescu, and Vytautas Paškūnas, The $p$-adic local Langlands correspondence for $\textrm {GL}_2(\Bbb Q_p)$, Camb. J. Math. 2 (2014), no. 1, 1–47. MR 3272011, DOI 10.4310/CJM.2014.v2.n1.a1
- Pierre Colmez and Jean-Marc Fontaine, Construction des représentations $p$-adiques semi-stables, Invent. Math. 140 (2000), no. 1, 1–43 (French). MR 1779803, DOI 10.1007/s002220000042
- Pierre Colmez and Wiesława Nizioł, Syntomic complexes and $p$-adic nearby cycles, Invent. Math. 208 (2017), no. 1, 1–108. MR 3621832, DOI 10.1007/s00222-016-0683-3
- J.-F. Dat, Théorie de Lubin-Tate non-abélienne et représentations elliptiques, Invent. Math. 169 (2007), no. 1, 75–152 (French, with English summary). MR 2308851, DOI 10.1007/s00222-007-0044-3
- Gabriel Dospinescu, Actions infinitésimales dans la correspondance de Langlands locale $p$-adique, Math. Ann. 354 (2012), no. 2, 627–657 (French, with English summary). MR 2965255, DOI 10.1007/s00208-011-0736-2
- Gabriel Dospinescu and Arthur-César Le Bras, Revêtements du demi-plan de Drinfeld et correspondance de Langlands $p$-adique, Ann. of Math. (2) 186 (2017), no. 2, 321–411 (French, with English and French summaries). MR 3702670, DOI 10.4007/annals.2017.186.2.1
- V. G. Drinfel′d, Elliptic modules, Mat. Sb. (N.S.) 94(136) (1974), 594–627, 656 (Russian). MR 384707
- V. G. Drinfel′d, Coverings of $p$-adic symmetric domains, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 29–40 (Russian). MR 422290
- A. Ducros, La structure des courbes analytiques, livre en préparation, version partielle disponible à https://webusers.imj-prg.fr/~antoine.ducros/livre.html
- Matthew Emerton, A local-global compatibility conjecture in the $p$-adic Langlands programme for $\textrm {GL}_{2/{\Bbb Q}}$, Pure Appl. Math. Q. 2 (2006), no. 2, Special Issue: In honor of John H. Coates., 279–393. MR 2251474, DOI 10.4310/PAMQ.2006.v2.n2.a1
- Gerd Faltings, The trace formula and Drinfel′d’s upper halfplane, Duke Math. J. 76 (1994), no. 2, 467–481. MR 1302321, DOI 10.1215/S0012-7094-94-07616-3
- Gerd Faltings, Almost étale extensions, Astérisque 279 (2002), 185–270. Cohomologies $p$-adiques et applications arithmétiques, II. MR 1922831
- Gerd Faltings, A relation between two moduli spaces studied by V. G. Drinfeld, Algebraic number theory and algebraic geometry, Contemp. Math., vol. 300, Amer. Math. Soc., Providence, RI, 2002, pp. 115–129. MR 1936369, DOI 10.1090/conm/300/05145
- Laurent Fargues, L’isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques, L’isomorphisme entre les tours de Lubin-Tate et de Drinfeld, Progr. Math., vol. 262, Birkhäuser, Basel, 2008, pp. 1–325 (French). MR 2441312
- Jean-Marc Fontaine and William Messing, $p$-adic periods and $p$-adic étale cohomology, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 179–207. MR 902593, DOI 10.1090/conm/067/902593
- Jean-Marc Fontaine, Représentations $l$-adiques potentiellement semi-stables, Astérisque 223 (1994), 321–347 (French). Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293977
- Jean Fresnel and Marius van der Put, Rigid analytic geometry and its applications, Progress in Mathematics, vol. 218, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2014891, DOI 10.1007/978-1-4612-0041-3
- M. J. Hopkins and B. H. Gross, Equivariant vector bundles on the Lubin-Tate moduli space, Topology and representation theory (Evanston, IL, 1992) Contemp. Math., vol. 158, Amer. Math. Soc., Providence, RI, 1994, pp. 23–88. MR 1263712, DOI 10.1090/conm/158/01453
- Elmar Grosse-Klönne, Rigid analytic spaces with overconvergent structure sheaf, J. Reine Angew. Math. 519 (2000), 73–95. MR 1739729, DOI 10.1515/crll.2000.018
- Elmar Grosse-Klönne, Frobenius and monodromy operators in rigid analysis, and Drinfel′d’s symmetric space, J. Algebraic Geom. 14 (2005), no. 3, 391–437. MR 2129006, DOI 10.1090/S1056-3911-05-00402-9
- Elmar Große-Klönne, De Rham cohomology of rigid spaces, Math. Z. 247 (2004), no. 2, 223–240. MR 2064051, DOI 10.1007/s00209-003-0544-9
- Michael Harris, Supercuspidal representations in the cohomology of Drinfel′d upper half spaces; elaboration of Carayol’s program, Invent. Math. 129 (1997), no. 1, 75–119. MR 1464867, DOI 10.1007/s002220050159
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- N. Jacobson, Structure theory of simple rings without finiteness assumptions, Trans. Amer. Math. Soc. 57 (1945), 228–245. MR 11680, DOI 10.1090/S0002-9947-1945-0011680-8
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 401654, DOI 10.1007/BFb0058988
- Johan de Jong and Marius van der Put, Étale cohomology of rigid analytic spaces, Doc. Math. 1 (1996), No. 01, 1–56. MR 1386046
- E. Knight, A $p$-adic Jacquet-Langlands correspondance, Harvard Thesis (2016), http://www.math.toronto.edu/~eknight/Thesis.pdf.
- Kiran S. Kedlaya and Ruochuan Liu, Relative $p$-adic Hodge theory: foundations, Astérisque 371 (2015), 239 (English, with English and French summaries). MR 3379653
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- Yasuo Morita, A $p$-adic theory of hyperfunctions. I, Publ. Res. Inst. Math. Sci. 17 (1981), no. 1, 1–24. MR 613933, DOI 10.2977/prims/1195186702
- G. A. Mustafin, Non-Archimedean uniformization, Mat. Sb. (N.S.) 105(147) (1978), no. 2, 207–237, 287 (Russian). MR 491696
- Jan Nekovář and Wiesława Nizioł, Syntomic cohomology and $p$-adic regulators for varieties over $p$-adic fields, Algebra Number Theory 10 (2016), no. 8, 1695–1790. With appendices by Laurent Berger and Frédéric Déglise. MR 3556797, DOI 10.2140/ant.2016.10.1695
- Lue Pan, First covering of the Drinfel’d upper half-plane and Banach representations of $\textrm {GL}_2(\Bbb {Q}_p)$, Algebra Number Theory 11 (2017), no. 2, 405–503. MR 3641878, DOI 10.2140/ant.2017.11.405
- V. Paškūnas, On some consequences of a theorem of J. Ludwig, arXiv:1804.07567 [math.NT] (2018).
- Takeshi Saito, Hilbert modular forms and $p$-adic Hodge theory, Compos. Math. 145 (2009), no. 5, 1081–1113. MR 2551990, DOI 10.1112/S0010437X09004175
- P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359–380. MR 1900706, DOI 10.1007/BF02784538
- P. Schneider and U. Stuhler, The cohomology of $p$-adic symmetric spaces, Invent. Math. 105 (1991), no. 1, 47–122. MR 1109620, DOI 10.1007/BF01232257
- Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313. MR 3090258, DOI 10.1007/s10240-012-0042-x
- Peter Scholze, $p$-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi 1 (2013), e1, 77. MR 3090230, DOI 10.1017/fmp.2013.1
- Peter Scholze, Perfectoid spaces: a survey, Current developments in mathematics 2012, Int. Press, Somerville, MA, 2013, pp. 193–227. MR 3204346
- Peter Scholze, On the $p$-adic cohomology of the Lubin-Tate tower, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 4, 811–863 (English, with English and French summaries). With an appendix by Michael Rapoport. MR 3861564, DOI 10.24033/asens.2367
- Peter Scholze and Jared Weinstein, Moduli of $p$-divisible groups, Camb. J. Math. 1 (2013), no. 2, 145–237. MR 3272049, DOI 10.4310/CJM.2013.v1.n2.a1
- P. Scholze, Étale cohomology of diamonds, arXiv:1709.07343 [math.AG] (2017).
- Matthias Strauch, Geometrically connected components of Lubin-Tate deformation spaces with level structures, Pure Appl. Math. Q. 4 (2008), no. 4, Special Issue: In honor of Jean-Pierre Serre., 1215–1232. MR 2441699, DOI 10.4310/PAMQ.2008.v4.n4.a10
- Michael Temkin, Introduction to Berkovich analytic spaces, Berkovich spaces and applications, Lecture Notes in Math., vol. 2119, Springer, Cham, 2015, pp. 3–66. MR 3330762, DOI 10.1007/978-3-319-11029-5_{1}
- Takeshi Tsuji, $p$-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), no. 2, 233–411. MR 1705837, DOI 10.1007/s002220050330
- Marius van der Put, The class group of a one-dimensional affinoid space, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 4, 155–164. MR 599628, DOI 10.5802/aif.812
- Marius van der Put, Serre duality for rigid analytic spaces, Indag. Math. (N.S.) 3 (1992), no. 2, 219–235. MR 1168350, DOI 10.1016/0019-3577(92)90011-9
- Jared Weinstein, Semistable models for modular curves of arbitrary level, Invent. Math. 205 (2016), no. 2, 459–526. MR 3529120, DOI 10.1007/s00222-015-0641-5
- S. Wewers, Some remarks on open analytic curves over non-archimedian fields, arXiv:math/0509434 [math.AG] (2005).
Bibliographic Information
- Pierre Colmez
- Affiliation: CNRS, IMJ-PRG, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
- MR Author ID: 50720
- Email: pierre.colmez@imj-prg.fr
- Gabriel Dospinescu
- Affiliation: CNRS, UMPA, École Normale Supérieure de Lyon, 46 allée d’Italie, 69007 Lyon, France
- MR Author ID: 857587
- Email: gabriel.dospinescu@ens-lyon.fr
- Wiesława Nizioł
- Affiliation: CNRS, UMPA, École Normale Supérieure de Lyon, 46 allée d’Italie, 69007 Lyon, France
- Email: wieslawa.niziol@ens-lyon.fr
- Received by editor(s): May 24, 2017
- Received by editor(s) in revised form: August 5, 2019
- Published electronically: December 24, 2019
- Additional Notes: Les trois auteurs étaient membres des projets PERCOLATOR puis COLOSS de l’ANR pendant la complétion de ce travail
- © Copyright 2019 American Mathematical Society
- Journal: J. Amer. Math. Soc. 33 (2020), 311-362
- MSC (2010): Primary 11E95, 11F80, 11F85, 14G35, 14H99, 20G25, 22E35
- DOI: https://doi.org/10.1090/jams/935
- MathSciNet review: 4073863
Dedicated: À la mémoire de Jean-Marc Fontaine