Residually finite rationally solvable groups and virtual fibring
HTML articles powered by AMS MathViewer
- by Dawid Kielak;
- J. Amer. Math. Soc. 33 (2020), 451-486
- DOI: https://doi.org/10.1090/jams/936
- Published electronically: December 24, 2019
- HTML | PDF | Request permission
Abstract:
We show that a non-trivial finitely generated residually finite rationally solvable (or RFRS) group $G$ is virtually fibred, in the sense that it admits a virtual surjection to $\mathbb {Z}$ with a finitely generated kernel, if and only if the first $L^2$-Betti number of $G$ vanishes. This generalises (and gives a new proof of) the analogous result of Ian Agol for fundamental groups of $3$-manifolds.References
- Ian Agol, Criteria for virtual fibering, J. Topol. 1 (2008), no. 2, 269–284. MR 2399130, DOI 10.1112/jtopol/jtn003
- Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087. With an appendix by Agol, Daniel Groves, and Jason Manning. MR 3104553
- Laurent Bartholdi, Amenability of groups is characterized by Myhill’s theorem, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 10, 3191–3197. With an appendix by Dawid Kielak. MR 3994103, DOI 10.4171/JEMS/900
- Robert Bieri, Deficiency and the geometric invariants of a group, J. Pure Appl. Algebra 208 (2007), no. 3, 951–959. With an appendix by Pascal Schweitzer. MR 2283437, DOI 10.1016/j.jpaa.2006.02.003
- Robert Bieri, Homological dimension of discrete groups, 2nd ed., Queen Mary College Mathematics Notes, Queen Mary College, Department of Pure Mathematics, London, 1981. MR 715779
- Robert Bieri, Walter D. Neumann, and Ralph Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987), no. 3, 451–477. MR 914846, DOI 10.1007/BF01389175
- Stefan Friedl and Stefano Vidussi, The Thurston norm and twisted Alexander polynomials, J. Reine Angew. Math. 707 (2015), 87–102. MR 3403454, DOI 10.1515/crelle-2013-0087
- Andrei Jaikin-Zapirain and Diego López-Álvarez, The strong Atiyah and Lück approximation conjectures for one-relator groups, arXiv:1810.12135.
- Dawid Kielak, The Bieri–Neumann–Strebel invariants via Newton polytopes, arXiv:1802.07049.
- Peter A. Linnell, Division rings and group von Neumann algebras, Forum Math. 5 (1993), no. 6, 561–576. MR 1242889, DOI 10.1515/form.1993.5.561
- John Lott and Wolfgang Lück, $L^2$-topological invariants of $3$-manifolds, Invent. Math. 120 (1995), no. 1, 15–60. MR 1323981, DOI 10.1007/BF01241121
- Wolfgang Lück, $L^2$-invariants: theory and applications to geometry and $K$-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649, DOI 10.1007/978-3-662-04687-6
- A. I. Mal′cev, On the embedding of group algebras in division algebras, Doklady Akad. Nauk SSSR (N.S.) 60 (1948), 1499–1501 (Russian). MR 25457
- B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202–252. MR 32593, DOI 10.1090/S0002-9947-1949-0032593-5
- Donald S. Passman, The algebraic structure of group rings, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1985. Reprint of the 1977 original. MR 798076
- Thomas Schick, Erratum: “Integrality of $L^2$-Betti numbers”, Math. Ann. 322 (2002), no. 2, 421–422. MR 1894160, DOI 10.1007/s002080100282
- Kevin Schreve, The strong Atiyah conjecture for virtually cocompact special groups, Math. Ann. 359 (2014), no. 3-4, 629–636. MR 3231009, DOI 10.1007/s00208-014-1007-9
- J.-C. Sikorav, Homologie de Novikov associée à une classe de cohomologie réelle de degré un, Thèse Orsay (1987).
- John Stallings, On fibering certain $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Inc., Englewood Cliffs, NJ, 1961, pp. 95–100. MR 158375
- Dov Tamari, A refined classification of semi-groups leading to generalized polynomial rings with a generalized degree concept, Proceedings of the International Congress of Mathematicians, 1954, vol. 1, Amsterdam, 1957, pp. 439–440.
- William P. Thurston, A norm for the homology of $3$-manifolds, Mem. Amer. Math. Soc. 59 (1986), no. 339, i–vi and 99–130. MR 823443
Bibliographic Information
- Dawid Kielak
- Affiliation: Fakultät für Mathematik, Universität Bielefeld, Postfach 100131 D-33501 Bielefeld, Germany
- MR Author ID: 1027989
- ORCID: 0000-0002-5536-9070
- Email: dkielak@math.uni-bielefeld.de
- Received by editor(s): September 25, 2018
- Received by editor(s) in revised form: July 22, 2019, and August 27, 2019
- Published electronically: December 24, 2019
- Additional Notes: The author was supported by the grant KI 1853/3-1 within the Priority Programme 2026 ‘Geometry at Infinity’ of the German Science Foundation (DFG)
- © Copyright 2019 American Mathematical Society
- Journal: J. Amer. Math. Soc. 33 (2020), 451-486
- MSC (2010): Primary 20F65; Secondary 57M10, 20E26, 12E15, 16S35, 20J05
- DOI: https://doi.org/10.1090/jams/936
- MathSciNet review: 4073866