Weak functoriality of Cohen-Macaulay algebras
HTML articles powered by AMS MathViewer
- by Yves André;
- J. Amer. Math. Soc. 33 (2020), 363-380
- DOI: https://doi.org/10.1090/jams/937
- Published electronically: January 6, 2020
- HTML | PDF | Request permission
Abstract:
We prove the weak functoriality of (big) Cohen-Macaulay algebras, which controls the whole skein of “homological conjectures” in commutative algebra; namely, for any local homomorphism $R\to R’$ of complete local domains, there exists a compatible homomorphism between some Cohen-Macaulay $R$-algebra and some Cohen-Macaulay $R’$-algebra.
When $R$ contains a field, this is already known. When $R$ is of mixed characteristic, our strategy of proof is reminiscent of G. Dietz’s refined treatment of weak functoriality of Cohen-Macaulay algebras in characteristic $p$; in fact, developing a “tilting argument” due to K. Shimomoto, we combine the perfectoid techniques of the author’s earlier work with Dietz’s result.
References
- Yves André, Le lemme d’Abhyankar perfectoide, Publ. Math. Inst. Hautes Études Sci. 127 (2018), 1–70 (French, with French summary). MR 3814650, DOI 10.1007/s10240-017-0096-x
- Yves André, La conjecture du facteur direct, Publ. Math. Inst. Hautes Études Sci. 127 (2018), 71–93 (French, with French summary). MR 3814651, DOI 10.1007/s10240-017-0097-9
- Yves André, Perfectoid spaces and the homological conjectures, Proceedings of the ICM (2018), 249-260.
- Luchezar L. Avramov, Hans-Bjørn Foxby, and Bernd Herzog, Structure of local homomorphisms, J. Algebra 164 (1994), no. 1, 124–145. MR 1268330, DOI 10.1006/jabr.1994.1057
- Jaap Bartijn and Jan R. Strooker, Modifications monomiales, Paul Dubreil and Marie-Paule Malliavin algebra seminar, 35th year (Paris, 1982) Lecture Notes in Math., vol. 1029, Springer, Berlin, 1983, pp. 192–217 (French). MR 732476, DOI 10.1007/BFb0098932
- Nicolas Bourbaki, Algèbre commutative, chapitres 1 à 7, Masson, Paris (1985).
- Geoffrey D. Dietz, Big Cohen-Macaulay algebras and seeds, Trans. Amer. Math. Soc. 359 (2007), no. 12, 5959–5989. MR 2336312, DOI 10.1090/S0002-9947-07-04252-3
- Ofer Gabber and Lorenzo Ramero, Almost ring theory, Lecture Notes in Mathematics, vol. 1800, Springer-Verlag, Berlin, 2003. MR 2004652, DOI 10.1007/b10047
- Raymond Heitmann and Linquan Ma, Big Cohen-Macaulay algebras and the vanishing conjecture for maps of Tor in mixed characteristic, Algebra Number Theory 12 (2018), no. 7, 1659–1674. MR 3871506, DOI 10.2140/ant.2018.12.1659
- Melvin Hochster, Current state of the homological conjectures, course at the University of Utah (2004) (online).
- Melvin Hochster, Solid closure, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 103–172. MR 1266182, DOI 10.1090/conm/159/01508
- Melvin Hochster and Craig Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992), no. 1, 53–89. MR 1147957, DOI 10.2307/2946563
- Melvin Hochster and Craig Huneke, Applications of the existence of big Cohen-Macaulay algebras, Adv. Math. 113 (1995), no. 1, 45–117. MR 1332808, DOI 10.1006/aima.1995.1035
- Craig Huneke, Absolute integral closure and big Cohen-Macaulay algebras, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 339–349. MR 1159222
- Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006. MR 2266432
- Luc Illusie, Yves Laszlo, and Fabrice Orgogozo, Introduction, Astérisque 363-364 (2014), xiii–xix (French). Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. MR 3329769
- Irving Kaplansky, Commutative rings, Dillon’s Q.M.C. Bookshop, 1968.
- Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313. MR 3090258, DOI 10.1007/s10240-012-0042-x
- Kazuma Shimomoto, An embedding problem of Noetherian rings into the Witt vectors, arXiv:1503.02018.
- Kazuma Shimomoto, Integral perfectoid big Cohen-Macaulay algebras via André’s theorem, Math. Ann. 372 (2018), no. 3-4, 1167–1188. MR 3880296, DOI 10.1007/s00208-018-1704-x
Bibliographic Information
- Yves André
- Affiliation: Institut de Mathématiques de Jussieu, Sorbonne-Université, 4 place Jussieu, 75005 Paris, France
- Email: yves.andre@imj-prg.fr
- Received by editor(s): January 31, 2018
- Received by editor(s) in revised form: April 12, 2018, June 20, 2018, June 21, 2018, November 24, 2018, January 4, 2019, August 6, 2019, August 11, 2019, and August 15, 2019
- Published electronically: January 6, 2020
- © Copyright 2020 American Mathematical Society
- Journal: J. Amer. Math. Soc. 33 (2020), 363-380
- MSC (2010): Primary 13D22, 13H05, 14G20
- DOI: https://doi.org/10.1090/jams/937
- MathSciNet review: 4073864