On the measure of maximal entropy for finite horizon Sinai Billiard maps
HTML articles powered by AMS MathViewer
- by Viviane Baladi and Mark F. Demers;
- J. Amer. Math. Soc. 33 (2020), 381-449
- DOI: https://doi.org/10.1090/jams/939
- Published electronically: January 6, 2020
- HTML | PDF | Request permission
Abstract:
The Sinai billiard map $T$ on the two-torus, i.e., the periodic Lorentz gas, is a discontinuous map. Assuming finite horizon, we propose a definition $h_*$ for the topological entropy of $T$. We prove that $h_*$ is not smaller than the value given by the variational principle, and that it is equal to the definitions of Bowen using spanning or separating sets. Under a mild condition of sparse recurrence to the singularities, we get more: First, using a transfer operator acting on a space of anisotropic distributions, we construct an invariant probability measure $\mu _*$ of maximal entropy for $T$ (i.e., $h_{\mu _*}(T)=h_*$), we show that $\mu _*$ has full support and is Bernoulli, and we prove that $\mu _*$ is the unique measure of maximal entropy and that it is different from the smooth invariant measure except if all nongrazing periodic orbits have multiplier equal to $h_*$. Second, $h_*$ is equal to the Bowen–Pesin–Pitskel topological entropy of the restriction of $T$ to a noncompact domain of continuity. Last, applying results of Lima and Matheus, as upgraded by Buzzi, the map $T$ has at least $C e^{nh_*}$ periodic points of period $n$ for all $n \in \mathbb {N}$.References
- Viviane Baladi, Mark F. Demers, and Carlangelo Liverani, Exponential decay of correlations for finite horizon Sinai billiard flows, Invent. Math. 211 (2018), no. 1, 39–177. MR 3742756, DOI 10.1007/s00222-017-0745-1
- P. Gaspard and F. Baras, Chaotic scattering and diffusion in the Lorentz gas, Phys. Rev. E (3) 51 (1995), no. 6, 5332–5352. MR 1383088, DOI 10.1103/PhysRevE.51.5332
- Eric Bedford and Jeffrey Diller, Energy and invariant measures for birational surface maps, Duke Math. J. 128 (2005), no. 2, 331–368. MR 2140266, DOI 10.1215/S0012-7094-04-12824-6
- Rufus Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377–397. MR 282372, DOI 10.1090/S0002-9947-1971-0282372-0
- Rufus Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125–136. MR 338317, DOI 10.1090/S0002-9947-1973-0338317-X
- Rufus Bowen, Maximizing entropy for a hyperbolic flow, Math. Systems Theory 7 (1974), no. 4, 300–303. MR 385928, DOI 10.1007/BF01795948
- Rufus Bowen, Some systems with unique equilibrium states, Math. Systems Theory 8 (1974/75), no. 3, 193–202. MR 399413, DOI 10.1007/BF01762666
- M. Brin and A. Katok, On local entropy, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 30–38. MR 730261, DOI 10.1007/BFb0061408
- L. A. Bunimovich, Ya. G. Sinaĭ, and N. I. Chernov, Markov partitions for two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk 45 (1990), no. 3(273), 97–134, 221 (Russian); English transl., Russian Math. Surveys 45 (1990), no. 3, 105–152. MR 1071936, DOI 10.1070/RM1990v045n03ABEH002355
- K. Burns, V. Climenhaga, T. Fisher, and D. J. Thompson, Unique equilibrium states for geodesic flows in nonpositive curvature, Geom. Funct. Anal. 28 (2018), no. 5, 1209–1259. MR 3856792, DOI 10.1007/s00039-018-0465-8
- D. Burago, S. Ferleger, and A. Kononenko, Topological entropy of semi-dispersing billiards, Ergodic Theory Dynam. Systems 18 (1998), no. 4, 791–805. MR 1645377, DOI 10.1017/S0143385798108246
- J. Buzzi, The degree of Bowen factors and injective codings of diffeomorphisms, arXiv:1807.04017, v2 (August 2019).
- J. Chen, F. Wang, and H.-K. Zhang, Markov partition and thermodynamic formalism for hyperbolic systems with singularities, arXiv:1709.00527
- N. I. Chernov, Topological entropy and periodic points of two-dimensional hyperbolic billiards, Funktsional. Anal. i Prilozhen. 25 (1991), no. 1, 50–57 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 1, 39–45. MR 1113121, DOI 10.1007/BF01090675
- N. I. Chernov, Sinai billiards under small external forces, Ann. Henri Poincaré 2 (2001), no. 2, 197–236. MR 1832968, DOI 10.1007/PL00001034
- Nikolai Chernov and Roberto Markarian, Chaotic billiards, Mathematical Surveys and Monographs, vol. 127, American Mathematical Society, Providence, RI, 2006. MR 2229799, DOI 10.1090/surv/127
- N. I. Chernov and C. Haskell, Nonuniformly hyperbolic $K$-systems are Bernoulli, Ergodic Theory Dynam. Systems 16 (1996), no. 1, 19–44. MR 1375125, DOI 10.1017/S0143385700008695
- N. I. Chernov and S. Troubetzkoy, Measures with infinite Lyapunov exponents for the periodic Lorentz gas, J. Statist. Phys. 83 (1996), no. 1-2, 193–202. MR 1382767, DOI 10.1007/BF02183645
- Gerhard Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank $1$ manifolds, Ann. of Math. (2) 148 (1998), no. 1, 291–314. MR 1652924, DOI 10.2307/120995
- Mark F. Demers, Paul Wright, and Lai-Sang Young, Entropy, Lyapunov exponents and escape rates in open systems, Ergodic Theory Dynam. Systems 32 (2012), no. 4, 1270–1301. MR 2955314, DOI 10.1017/S0143385711000344
- Mark F. Demers and Hong-Kun Zhang, Spectral analysis of the transfer operator for the Lorentz gas, J. Mod. Dyn. 5 (2011), no. 4, 665–709. MR 2903754, DOI 10.3934/jmd.2011.5.665
- Mark F. Demers and Hong-Kun Zhang, A functional analytic approach to perturbations of the Lorentz gas, Comm. Math. Phys. 324 (2013), no. 3, 767–830. MR 3123537, DOI 10.1007/s00220-013-1820-0
- Mark F. Demers and Hong-Kun Zhang, Spectral analysis of hyperbolic systems with singularities, Nonlinearity 27 (2014), no. 3, 379–433. MR 3168259, DOI 10.1088/0951-7715/27/3/379
- Mark F. Demers, Luc Rey-Bellet, and Hong-Kun Zhang, Fluctuation of the entropy production for the Lorentz gas under small external Forces, Comm. Math. Phys. 363 (2018), no. 2, 699–740. MR 3851827, DOI 10.1007/s00220-018-3228-3
- J. De Simoi, V. Kaloshin, and M. Leguil, Marked length spectral determination of analytic chaotic billiards with axial symmetries arXiv:1905.00890, v3 (August 2019)
- Jeffrey Diller, Romain Dujardin, and Vincent Guedj, Dynamics of meromorphic mappings with small topological degree II: Energy and invariant measure, Comment. Math. Helv. 86 (2011), no. 2, 277–316. MR 2775130, DOI 10.4171/CMH/224
- Jeffrey Diller, Romain Dujardin, and Vincent Guedj, Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 2, 235–278 (English, with English and French summaries). MR 2662665, DOI 10.24033/asens.2120
- Dmitry Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. (2) 147 (1998), no. 2, 357–390. MR 1626749, DOI 10.2307/121012
- Dmitry Dolgopyat, Prevalence of rapid mixing in hyperbolic flows, Ergodic Theory Dynam. Systems 18 (1998), no. 5, 1097–1114. MR 1653299, DOI 10.1017/S0143385798117431
- Romain Dujardin, Laminar currents and birational dynamics, Duke Math. J. 131 (2006), no. 2, 219–247. MR 2219241, DOI 10.1215/S0012-7094-06-13122-8
- Giovanni Gallavotti and Donald S. Ornstein, Billiards and Bernoulli schemes, Comm. Math. Phys. 38 (1974), 83–101. MR 355003, DOI 10.1007/BF01651505
- Shmuel Friedland, Entropy of holomorphic and rational maps: a survey, Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., vol. 54, Cambridge Univ. Press, Cambridge, 2007, pp. 113–128. MR 2369444, DOI 10.1017/CBO9780511755187.005
- P. L. Garrido, Kolmogorov-Sinai entropy, Lyapunov exponents, and mean free time in billiard systems, J. Statist. Phys. 88 (1997), no. 3-4, 807–824. MR 1467631, DOI 10.1023/B:JOSS.0000015173.74708.2a
- Sébastien Gouëzel and Carlangelo Liverani, Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties, J. Differential Geom. 79 (2008), no. 3, 433–477. MR 2433929
- B. M. Gurevič, Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR 187 (1969), 715–718 (Russian). MR 263162
- B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR 192 (1970), 963–965 (Russian). MR 268356
- Eugene Gutkin, Billiard dynamics: an updated survey with the emphasis on open problems, Chaos 22 (2012), no. 2, 026116, 13. MR 3388585, DOI 10.1063/1.4729307
- A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137–173. MR 573822, DOI 10.1007/BF02684777
- Anatole Katok, Fifty years of entropy in dynamics: 1958–2007, J. Mod. Dyn. 1 (2007), no. 4, 545–596. MR 2342699, DOI 10.3934/jmd.2007.1.545
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- Anatole Katok, Jean-Marie Strelcyn, F. Ledrappier, and F. Przytycki, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Mathematics, vol. 1222, Springer-Verlag, Berlin, 1986. MR 872698, DOI 10.1007/BFb0099031
- Gerhard Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank $1$ manifolds, Ann. of Math. (2) 148 (1998), no. 1, 291–314. MR 1652924, DOI 10.2307/120995
- Yuri Lima and Carlos Matheus, Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 1, 1–38 (English, with English and French summaries). MR 3764037, DOI 10.24033/asens.2350
- Carlangelo Liverani, Decay of correlations, Ann. of Math. (2) 142 (1995), no. 2, 239–301. MR 1343323, DOI 10.2307/2118636
- Ricardo Mañé, A proof of Pesin’s formula, Ergodic Theory Dynam. Systems 1 (1981), no. 1, 95–102. MR 627789, DOI 10.1017/s0143385700001188
- G. A. Margulis, Certain applications of ergodic theory to the investigation of manifolds of negative curvature, Funkcional. Anal. i Priložen. 3 (1969), no. 4, 89–90 (Russian). MR 257933
- Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. MR 2035655, DOI 10.1007/978-3-662-09070-1
- D. S. Ornstein, Imbedding Bernoulli shifts in flows, Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970) Lecture Notes in Math., Vol. 160, Springer, Berlin-New York, 1970, pp. 178–218. MR 272985
- Donald S. Ornstein and Benjamin Weiss, Geodesic flows are Bernoullian, Israel J. Math. 14 (1973), 184–198. MR 325926, DOI 10.1007/BF02762673
- William Parry and Mark Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. (2) 118 (1983), no. 3, 573–591. MR 727704, DOI 10.2307/2006982
- Yakov B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications. MR 1489237, DOI 10.7208/chicago/9780226662237.001.0001
- Ya. B. Pesin and B. S. Pitskel′, Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen. 18 (1984), no. 4, 50–63, 96 (Russian, with English summary). MR 775933
- Mark Pollicott and Richard Sharp, Exponential error terms for growth functions on negatively curved surfaces, Amer. J. Math. 120 (1998), no. 5, 1019–1042. MR 1646052, DOI 10.1353/ajm.1998.0041
- Mark Pollicott and Richard Sharp, Error terms for closed orbits of hyperbolic flows, Ergodic Theory Dynam. Systems 21 (2001), no. 2, 545–562. MR 1827118, DOI 10.1017/S0143385701001274
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- V.A. Rokhlin and Ya.G. Sinai, Construction and properties of invariant measurable partitions, Soviet Math. Dokl. 2 (1962) 1611–1614
- Omri M. Sarig, Bernoulli equilibrium states for surface diffeomorphisms, J. Mod. Dyn. 5 (2011), no. 3, 593–608. MR 2854097, DOI 10.3934/jmd.2011.5.593
- Omri M. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc. 26 (2013), no. 2, 341–426. MR 3011417, DOI 10.1090/S0894-0347-2012-00758-9
- Laurent Schwartz, Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, IX-X, Hermann, Paris, 1966 (French). Nouvelle édition, entiérement corrigée, refondue et augmentée. MR 209834
- Ja. G. Sinaĭ, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk 25 (1970), no. 2(152), 141–192 (Russian). MR 274721
- Ya. G. Sinaĭ and N. I. Chernov, Ergodic properties of some systems of two-dimensional disks and three-dimensional balls, Uspekhi Mat. Nauk 42 (1987), no. 3(255), 153–174, 256 (Russian). MR 896880
- Luchezar Stojanov, An estimate from above of the number of periodic orbits for semi-dispersed billiards, Comm. Math. Phys. 124 (1989), no. 2, 217–227. MR 1012865, DOI 10.1007/BF01219195
- Luchezar Stoyanov, Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows, Amer. J. Math. 123 (2001), no. 4, 715–759. MR 1844576, DOI 10.1353/ajm.2001.0029
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108, DOI 10.1007/978-1-4612-5775-2
- Lai-Sang Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998), no. 3, 585–650. MR 1637655, DOI 10.2307/120960
Bibliographic Information
- Viviane Baladi
- Affiliation: CNRS, Institut de Mathématiques de Jussieu (IMJ-PRG), Sorbonne Université, 4, Place Jussieu, 75005 Paris, France
- Address at time of publication: Laboratoire de Probabilités, Statistique et Modélisation (LPSM), CNRS, Sorbonne Université, Université de Paris, 4, Place Jussieu, 75005 Paris, France
- MR Author ID: 29810
- Email: baladi@lpsm.paris
- Mark F. Demers
- Affiliation: Department of Mathematics, Fairfield University, Fairfield, Connecticut 06824
- MR Author ID: 763971
- Email: mdemers@fairfield.edu
- Received by editor(s): August 25, 2018
- Received by editor(s) in revised form: August 19, 2019
- Published electronically: January 6, 2020
- Additional Notes: The first author’s research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 787304).
The second author was partly supported by NSF grants DMS 1362420 and DMS 1800321. - © Copyright 2020 American Mathematical Society
- Journal: J. Amer. Math. Soc. 33 (2020), 381-449
- MSC (2010): Primary 37D50; Secondary 37C30, 37B40, 37A25, 46E35, 47B38
- DOI: https://doi.org/10.1090/jams/939
- MathSciNet review: 4073865