Strongly anisotropic type II blow up at an isolated point
HTML articles powered by AMS MathViewer
- by Charles Collot, Frank Merle and Pierre Raphaël;
- J. Amer. Math. Soc. 33 (2020), 527-607
- DOI: https://doi.org/10.1090/jams/941
- Published electronically: February 20, 2020
- HTML | PDF | Request permission
Abstract:
We consider the energy supercritical $d+1$-dimensional semi-linear heat equation \begin{equation*} \partial _tu=\Delta u+u^{p}, \ \ x\in \Bbb R^{d+1}, \ \ p\geq 3, \ d\geq 14. \end{equation*} A fundamental open problem on this canonical nonlinear model is to understand the possible blow-up profiles appearing after renormalisation of a singularity. We exhibit in this paper a new scenario corresponding to the first example of a strongly anisotropic blow-up bubble: the solution displays a completely different behaviour depending on the considered direction in space. A fundamental step of the analysis is to solve the reconnection problem in order to produce finite energy solutions which is the heart of the matter. The corresponding anistropic mechanism is expected to be of fundamental importance in other settings in particular in fluid mechanics. The proof relies on a new functional framework for the construction and stabilisation of type II bubbles in the parabolic setting using energy estimates only, and allows us to exhibit new unexpected blow-up speeds.References
- Marsha Berger and Robert V. Kohn, A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math. 41 (1988), no. 6, 841–863. MR 948774, DOI 10.1002/cpa.3160410606
- Haïm Brezis and Thierry Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277–304. MR 1403259, DOI 10.1007/BF02790212
- J. Bricmont, A. Kupiainen, and G. Lin, Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Comm. Pure Appl. Math. 47 (1994), no. 6, 893–922. MR 1280993, DOI 10.1002/cpa.3160470606
- C. Budd and J. Norbury, Semilinear elliptic equations and supercritical growth, J. Differential Equations 68 (1987), no. 2, 169–197. MR 892022, DOI 10.1016/0022-0396(87)90190-2
- C. J. Budd and Yuan-Wei Qi, The existence of bounded solutions of a semilinear elliptic equation, J. Differential Equations 82 (1989), no. 2, 207–218. MR 1027967, DOI 10.1016/0022-0396(89)90131-9
- PawełBiernat and Piotr Bizoń, Shrinkers, expanders, and the unique continuation beyond generic blowup in the heat flow for harmonic maps between spheres, Nonlinearity 24 (2011), no. 8, 2211–2228. MR 2813584, DOI 10.1088/0951-7715/24/8/005
- PawełBiernat and Yukihiro Seki, Type II blow-up mechanism for supercritical harmonic map heat flow, Int. Math. Res. Not. IMRN 2 (2019), 407–456. MR 3903563, DOI 10.1093/imrn/rnx122
- Piotr Bizoń, Dieter Maison, and Arthur Wasserman, Self-similar solutions of semilinear wave equations with a focusing nonlinearity, Nonlinearity 20 (2007), no. 9, 2061–2074. MR 2351023, DOI 10.1088/0951-7715/20/9/003
- Jean Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 197–215 (1998). Dedicated to Ennio De Giorgi. MR 1655515
- Charles Collot, Type II blow up manifolds for the energy supercritical semilinear wave equation, Mem. Amer. Math. Soc. 252 (2018), no. 1205, v+163. MR 3778126, DOI 10.1090/memo/1205
- Charles Collot, Nonradial type II blow up for the energy-supercritical semilinear heat equation, Anal. PDE 10 (2017), no. 1, 127–252. MR 3611015, DOI 10.2140/apde.2017.10.127
- Charles Collot, Frank Merle, and Pierre Raphaël, Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions, Comm. Math. Phys. 352 (2017), no. 1, 215–285. MR 3623259, DOI 10.1007/s00220-016-2795-4
- Charles Collot, Frank Merle, and Pierre Raphaël, Stability of ODE blow-up for the energy critical semilinear heat equation, C. R. Math. Acad. Sci. Paris 355 (2017), no. 1, 65–79 (English, with English and French summaries). MR 3590287, DOI 10.1016/j.crma.2016.10.020
- C. Cortazar, M. del Pino, and M. Musso, Green’s function and infinite-time bubbling in the critical nonlinear heat equation, arXiv preprint arXiv:1604.07117 (2016).
- Charles Collot, Pierre Raphaël, and Jeremie Szeftel, On the stability of type I blow up for the energy super critical heat equation, Mem. Amer. Math. Soc. 260 (2019), no. 1255, v+97. MR 3986939, DOI 10.1090/memo/1255
- Raphaël Côte and Hatem Zaag, Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension, Comm. Pure Appl. Math. 66 (2013), no. 10, 1541–1581. MR 3084698, DOI 10.1002/cpa.21452
- J. Dávila, M. del Pino, and J. Wei, Singularity formation for the two-dimensional harmonic map flow into $S^2$, arXiv preprint arXiv:1702.05801 (2017).
- E. N. Dancer, Zongming Guo, and Juncheng Wei, Non-radial singular solutions of the Lane-Emden equation in $\Bbb R^N$, Indiana Univ. Math. J. 61 (2012), no. 5, 1971–1996. MR 3119607, DOI 10.1512/iumj.2012.61.4749
- M. del Pino, M. Musso, and J. Wei, Infinite time blow-up for the 3-dimensional energy critical heat equation, arXiv preprint arXiv:1705.01672 (2017).
- M. del Pino, M. Musso, and J. Wei, Geometry driven Type II higher dimensional blow-up for the critical heat equation, arXiv preprint arXiv:1710.11461 (2017).
- Roland Donninger and Birgit Schörkhuber, Stable blow up dynamics for energy supercritical wave equations, Trans. Amer. Math. Soc. 366 (2014), no. 4, 2167–2189. MR 3152726, DOI 10.1090/S0002-9947-2013-06038-2
- Gadi Fibich, Nir Gavish, and Xiao-Ping Wang, Singular ring solutions of critical and supercritical nonlinear Schrödinger equations, Phys. D 231 (2007), no. 1, 55–86. MR 2370365, DOI 10.1016/j.physd.2007.04.007
- Gadi Fibich, Nir Gavish, and Xiao-Ping Wang, New singular solutions of the nonlinear Schrödinger equation, Phys. D 211 (2005), no. 3-4, 193–220. MR 2185470, DOI 10.1016/j.physd.2005.08.007
- Marek Fila and John R. King, Grow up and slow decay in the critical Sobolev case, Netw. Heterog. Media 7 (2012), no. 4, 661–671. MR 3004680, DOI 10.3934/nhm.2012.7.661
- Stathis Filippas, Miguel A. Herrero, and Juan J. L. Velázquez, Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456 (2000), no. 2004, 2957–2982. MR 1843848, DOI 10.1098/rspa.2000.0648
- Yoshikazu Giga, On elliptic equations related to self-similar solutions for nonlinear heat equations, Hiroshima Math. J. 16 (1986), no. 3, 539–552. MR 867579
- Yoshikazu Giga and Robert V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), no. 3, 297–319. MR 784476, DOI 10.1002/cpa.3160380304
- Yoshikazu Giga and Robert V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987), no. 1, 1–40. MR 876989, DOI 10.1512/iumj.1987.36.36001
- Yoshikazu Giga and Robert V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), no. 6, 845–884. MR 1003437, DOI 10.1002/cpa.3160420607
- Yoshikazu Giga, Shin’ya Matsui, and Satoshi Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J. 53 (2004), no. 2, 483–514. MR 2060042, DOI 10.1512/iumj.2004.53.2401
- Mahir Hadžić and Pierre Raphaël, On melting and freezing for the 2D radial Stefan problem, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 11, 3259–3341. MR 4012340, DOI 10.4171/JEMS/904
- M. A. Herrero and J. J. L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 10 (1993), no. 2, 131–189 (English, with English and French summaries). MR 1220032, DOI 10.1016/S0294-1449(16)30217-7
- M. Herrero, J. Velazquez, A blow up result for the semilinear heat equations in the supercritical case, preprint 1992.
- Matthieu Hillairet and Pierre Raphaël, Smooth type II blow-up solutions to the four-dimensional energy-critical wave equation, Anal. PDE 5 (2012), no. 4, 777–829. MR 3006642, DOI 10.2140/apde.2012.5.777
- Jacek Jendrej, Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5, J. Funct. Anal. 272 (2017), no. 3, 866–917. MR 3579128, DOI 10.1016/j.jfa.2016.10.019
- Paschalis Karageorgis and Walter A. Strauss, Instability of steady states for nonlinear wave and heat equations, J. Differential Equations 241 (2007), no. 1, 184–205. MR 2356215, DOI 10.1016/j.jde.2007.06.006
- Joachim Krieger, Wilhelm Schlag, and Daniel Tataru, Slow blow-up solutions for the $H^1(\Bbb R^3)$ critical focusing semilinear wave equation, Duke Math. J. 147 (2009), no. 1, 1–53. MR 2494455, DOI 10.1215/00127094-2009-005
- L. A. Lepin, Self-similar solutions of a semilinear heat equation, Mat. Model. 2 (1990), no. 3, 63–74 (Russian, with English summary). MR 1059601
- Yi Li, Asymptotic behavior of positive solutions of equation $\Delta u+K(x)u^p=0$ in $\textbf {R}^n$, J. Differential Equations 95 (1992), no. 2, 304–330. MR 1165425, DOI 10.1016/0022-0396(92)90034-K
- Hiroshi Matano and Frank Merle, On nonexistence of type II blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math. 57 (2004), no. 11, 1494–1541. MR 2077706, DOI 10.1002/cpa.20044
- Hiroshi Matano and Frank Merle, Threshold and generic type I behaviors for a supercritical nonlinear heat equation, J. Funct. Anal. 261 (2011), no. 3, 716–748. MR 2799578, DOI 10.1016/j.jfa.2011.02.025
- Y. Martel and P. Raphael, Strongly interacting blow up bubbles for the mass critical NLS, arXiv preprint arXiv:1512.00900 (2015).
- Yvan Martel, Frank Merle, Kenji Nakanishi, and Pierre Raphaël, Codimension one threshold manifold for the critical gKdV equation, Comm. Math. Phys. 342 (2016), no. 3, 1075–1106. MR 3465440, DOI 10.1007/s00220-015-2509-3
- Frank Merle and Pierre Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math. (2) 161 (2005), no. 1, 157–222. MR 2150386, DOI 10.4007/annals.2005.161.157
- Frank Merle, Pierre Raphaël, and Igor Rodnianski, Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem, Invent. Math. 193 (2013), no. 2, 249–365. MR 3090180, DOI 10.1007/s00222-012-0427-y
- Frank Merle, Pierre Raphaël, and Igor Rodnianski, Type II blow up for the energy supercritical NLS, Camb. J. Math. 3 (2015), no. 4, 439–617. MR 3435273, DOI 10.4310/CJM.2015.v3.n4.a1
- Frank Merle, Pierre Raphaël, and Jeremie Szeftel, Stable self-similar blow-up dynamics for slightly $L^2$ super-critical NLS equations, Geom. Funct. Anal. 20 (2010), no. 4, 1028–1071. MR 2729284, DOI 10.1007/s00039-010-0081-8
- Frank Merle, Pierre Raphaël, and Jeremie Szeftel, On collapsing ring blow-up solutions to the mass supercritical nonlinear Schrödinger equation, Duke Math. J. 163 (2014), no. 2, 369–431. MR 3161317, DOI 10.1215/00127094-2430477
- F. Merle, P. Raphaël, and J. Szeftel, Anisotropic type I blow up for the energy super critical heat equation, preprint 2017.
- Frank Merle and Hatem Zaag, Stability of the blow-up profile for equations of the type $u_t=\Delta u+|u|^{p-1}u$, Duke Math. J. 86 (1997), no. 1, 143–195. MR 1427848, DOI 10.1215/S0012-7094-97-08605-1
- Frank Merle and Hatem Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math. 51 (1998), no. 2, 139–196. MR 1488298, DOI 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C
- Frank Merle and Hatem Zaag, Determination of the blow-up rate for the semilinear wave equation, Amer. J. Math. 125 (2003), no. 5, 1147–1164. MR 2004432, DOI 10.1353/ajm.2003.0033
- Noriko Mizoguchi, Type-II blowup for a semilinear heat equation, Adv. Differential Equations 9 (2004), no. 11-12, 1279–1316. MR 2099557
- Noriko Mizoguchi, Rate of type II blowup for a semilinear heat equation, Math. Ann. 339 (2007), no. 4, 839–877. MR 2341904, DOI 10.1007/s00208-007-0133-z
- Pierre Raphaël, Existence and stability of a solution blowing up on a sphere for an $L^2$-supercritical nonlinear Schrödinger equation, Duke Math. J. 134 (2006), no. 2, 199–258. MR 2248831, DOI 10.1215/S0012-7094-06-13421-X
- Pierre Raphaël and Igor Rodnianski, Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 1–122. MR 2929728, DOI 10.1007/s10240-011-0037-z
- Pierre Raphaël and Remi Schweyer, Quantized slow blow-up dynamics for the corotational energy-critical harmonic heat flow, Anal. PDE 7 (2014), no. 8, 1713–1805. MR 3318739, DOI 10.2140/apde.2014.7.1713
- Pierre Raphaël and Jérémie Szeftel, Standing ring blow up solutions to the $N$-dimensional quintic nonlinear Schrödinger equation, Comm. Math. Phys. 290 (2009), no. 3, 973–996. MR 2525647, DOI 10.1007/s00220-009-0796-2
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- Rémi Schweyer, Type II blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal. 263 (2012), no. 12, 3922–3983. MR 2990063, DOI 10.1016/j.jfa.2012.09.015
- Yukihiro Seki, Type II blow-up mechanisms in a semilinear heat equation with critical Joseph-Lundgren exponent, J. Funct. Anal. 275 (2018), no. 12, 3380–3456. MR 3864506, DOI 10.1016/j.jfa.2018.05.008
- Catherine Sulem and Pierre-Louis Sulem, The nonlinear Schrödinger equation, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. Self-focusing and wave collapse. MR 1696311
- William C. Troy, The existence of bounded solutions of a semilinear heat equation, SIAM J. Math. Anal. 18 (1987), no. 2, 332–336. MR 876275, DOI 10.1137/0518026
- J. J. L. Velázquez, Estimates on the $(n-1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J. 42 (1993), no. 2, 445–476. MR 1237055, DOI 10.1512/iumj.1993.42.42021
- J. J. L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc. 338 (1993), no. 1, 441–464. MR 1134760, DOI 10.1090/S0002-9947-1993-1134760-2
- Fred B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^{p}$, Indiana Univ. Math. J. 29 (1980), no. 1, 79–102. MR 554819, DOI 10.1512/iumj.1980.29.29007
- Hatem Zaag, On the regularity of the blow-up set for semilinear heat equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 19 (2002), no. 5, 505–542 (English, with English and French summaries). MR 1922468, DOI 10.1016/S0294-1449(01)00088-9
- Hatem Zaag, Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation, Duke Math. J. 133 (2006), no. 3, 499–525. MR 2228461, DOI 10.1215/S0012-7094-06-13333-1
Bibliographic Information
- Charles Collot
- Affiliation: Laboratoire J.A. Dieudonné, Université de la Côte d’Azur, France
- MR Author ID: 1192817
- Email: ccollot@unice.fr
- Frank Merle
- Affiliation: Laboratoire AGM, Université de Cergy Pontoise, France –and– Institute des Hautes Études Scientifiques
- MR Author ID: 123710
- Email: merle@math.u-cergy.fr
- Pierre Raphaël
- Affiliation: Laboratoire J.A. Dieudonné, Université de la Côte d’Azur, France
- Email: praphael@unice.fr
- Received by editor(s): May 17, 2017
- Received by editor(s) in revised form: May 2, 2019, and September 9, 2019
- Published electronically: February 20, 2020
- Additional Notes: The first and third authors were supported by the ERC-2014-CoG 646650 SingWave.
- © Copyright 2020 American Mathematical Society
- Journal: J. Amer. Math. Soc. 33 (2020), 527-607
- MSC (2010): Primary 35K58
- DOI: https://doi.org/10.1090/jams/941
- MathSciNet review: 4073868