Zéro-cycles sur les espaces homogènes et problème de Galois inverse
HTML articles powered by AMS MathViewer
- by Yonatan Harpaz and Olivier Wittenberg;
- J. Amer. Math. Soc. 33 (2020), 775-805
- DOI: https://doi.org/10.1090/jams/943
- Published electronically: March 10, 2020
- HTML | PDF
Abstract:
Soit $X$ une compactification lisse d’un espace homogène d’un groupe algébrique linéaire $G$ sur un corps de nombres $k$. Nous établissons la conjecture de Colliot-Thélène, Sansuc, Kato et Saito sur l’image du groupe de Chow des zéro-cycles de $X$ dans le produit des mêmes groupes sur tous les complétés de $k$. Lorsque $G$ est semi-simple et simplement connexe et que le stabilisateur géométrique est fini et hyper-résoluble, nous montrons que les points rationnels de $X$ sont denses dans l’ensemble de Brauer–Manin. Pour les groupes finis hyper-résolubles, en particulier pour les groupes finis nilpotents, cela donne une nouvelle preuve du théorème de Shafarevich sur le problème de Galois inverse et résout en même temps, pour ces groupes, le problème de Grunwald.
Abstract. Let $X$ be a smooth compactification of a homogeneous space of a linear algebraic group $G$ over a number field $k$. We establish the conjecture of Colliot-Thélène, Sansuc, Kato, and Saito on the image of the Chow group of zero-cycles of $X$ in the product of the same groups over all the completions of $k$. When $G$ is semisimple and simply connected and the geometric stabiliser is finite and supersolvable, we show that rational points of $X$ are dense in the Brauer–Manin set. For finite supersolvable groups, in particular for finite nilpotent groups, this yields a new proof of Shafarevich’s theorem on the inverse Galois problem, and solves, at the same time, Grunwald’s problem, for these groups.
References
- Mikhail Borovoi, Cyril Demarche, and David Harari, Complexes de groupes de type multiplicatif et groupe de Brauer non ramifié des espaces homogènes, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 4, 651–692 (2013) (French, with English and French summaries). MR 3098426, DOI 10.24033/asens.2198
- F. A. Bogomolov, The Brauer group of quotient spaces of linear representations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 485–516, 688 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 3, 455–485. MR 903621, DOI 10.1070/IM1988v030n03ABEH001024
- F. A. Bogomolov, Brauer groups of the fields of invariants of algebraic groups, Mat. Sb. 180 (1989), no. 2, 279–293 (Russian); English transl., Math. USSR-Sb. 66 (1990), no. 1, 285–299. MR 993459, DOI 10.1070/SM1990v066n01ABEH001173
- Mikhail Borovoi, The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer, J. Reine Angew. Math. 473 (1996), 181–194. MR 1390687, DOI 10.1515/crll.1995.473.181
- Yang Cao, Approximation forte pour les variétés avec une action d’un groupe linéaire, Compos. Math. 154 (2018), no. 4, 773–819 (French, with English and French summaries). MR 3778194, DOI 10.1112/S0010437X17007709
- Yang Cao, Cyril Demarche, and Fei Xu, Comparing descent obstruction and Brauer-Manin obstruction for open varieties, Trans. Amer. Math. Soc. 371 (2019), no. 12, 8625–8650. MR 3955558, DOI 10.1090/tran/7567
- V. I. Chernousov, Galois cohomology and weak approximation for the quotient manifolds $A^n/G$, Trudy Mat. Inst. Steklov. 208 (1995), no. Teor. Chisel, Algebra i Algebr. Geom., 335–349 (Russian). Dedicated to Academician Igor′Rostislavovich Shafarevich on the occasion of his seventieth birthday (Russian). MR 1730273
- Jean-Louis Colliot-Thélène, L’arithmétique du groupe de Chow des zéro-cycles, J. Théor. Nombres Bordeaux 7 (1995), no. 1, 51–73 (French). Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993). MR 1413566
- Jean-Louis Colliot-Thélène, Rational connectedness and Galois covers of the projective line, Ann. of Math. (2) 151 (2000), no. 1, 359–373. MR 1745009, DOI 10.2307/121121
- Jean-Louis Colliot-Thélène, Points rationnels sur les fibrations, Higher dimensional varieties and rational points (Budapest, 2001) Bolyai Soc. Math. Stud., vol. 12, Springer, Berlin, 2003, pp. 171–221 (French). MR 2011747, DOI 10.1007/978-3-662-05123-8_{7}
- Jean-Louis Colliot-Thélène, Un théorème de finitude pour le groupe de Chow des zéro-cycles d’un groupe algébrique linéaire sur un corps $p$-adique, Invent. Math. 159 (2005), no. 3, 589–606 (French, with German summary). MR 2125734, DOI 10.1007/s00222-004-0393-0
- J.-L. Colliot-Thélène, D. Harari, and A. N. Skorobogatov, Valeurs d’un polynôme à une variable représentées par une norme, Number theory and algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 303, Cambridge Univ. Press, Cambridge, 2003, pp. 69–89 (French, with English summary). MR 2053456
- Jean-Louis Colliot-Thélène and Boris È. Kunyavskiĭ, Groupe de Picard et groupe de Brauer des compactifications lisses d’espaces homogènes, J. Algebraic Geom. 15 (2006), no. 4, 733–752 (French, with English summary). MR 2237268, DOI 10.1090/S1056-3911-06-00427-9
- Jean-Louis Colliot-Thélène, Ambrus Pál, and Alexei N. Skorobogatov, Pathologies of the Brauer-Manin obstruction, Math. Z. 282 (2016), no. 3-4, 799–817. MR 3473644, DOI 10.1007/s00209-015-1565-x
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch, Duke Math. J. 48 (1981), no. 2, 421–447. MR 620258
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375–492 (French). MR 899402, DOI 10.1215/S0012-7094-87-05420-2
- J.-L. Colliot-Thélène and A. N. Skorobogatov, Descent on fibrations over $\textbf {P}^1_k$ revisited, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 3, 383–393 (English, with French summary). MR 1744112, DOI 10.1017/S0305004199004077
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group), Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., vol. 19, Tata Inst. Fund. Res., Mumbai, 2007, pp. 113–186. MR 2348904
- Jean-Louis Colliot-Thélène and Alexei N. Skorobogatov, Good reduction of the Brauer-Manin obstruction, Trans. Amer. Math. Soc. 365 (2013), no. 2, 579–590. MR 2995366, DOI 10.1090/S0002-9947-2012-05556-5
- Jean-Louis Colliot-Thélène and Peter Swinnerton-Dyer, Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. Reine Angew. Math. 453 (1994), 49–112. MR 1285781, DOI 10.1515/crll.1994.453.49
- Cyril Demarche, Groupe de Brauer non ramifié d’espaces homogènes à stabilisateurs finis, Math. Ann. 346 (2010), no. 4, 949–968 (French, with French summary). MR 2587098, DOI 10.1007/s00208-009-0415-8
- Cyril Demarche and Giancarlo Lucchini Arteche, Le principe de Hasse pour les espaces homogènes: réduction au cas des stabilisateurs finis, Compos. Math. 155 (2019), no. 8, 1568–1593 (French, with English and French summaries). MR 3977320, DOI 10.1112/s0010437x19007395
- Cyril Demarche, Giancarlo Lucchini Arteche, and Danny Neftin, The Grunwald problem and approximation properties for homogeneous spaces, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 3, 1009–1033 (English, with English and French summaries). MR 3668767, DOI 10.5802/aif.3104
- Ulrich Derenthal, Arne Smeets, and Dasheng Wei, Universal torsors and values of quadratic polynomials represented by norms, Math. Ann. 361 (2015), no. 3-4, 1021–1042. MR 3319557, DOI 10.1007/s00208-014-1106-7
- Torsten Ekedahl, An effective version of Hilbert’s irreducibility theorem, Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhäuser Boston, Boston, MA, 1990, pp. 241–249. MR 1104709
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67. MR 1937199, DOI 10.1090/S0894-0347-02-00402-2
- Alexander Grothendieck, Le groupe de Brauer. III. Exemples et compléments, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 88–188 (French). MR 244271
- David Harari, Méthode des fibrations et obstruction de Manin, Duke Math. J. 75 (1994), no. 1, 221–260 (French). MR 1284820, DOI 10.1215/S0012-7094-94-07507-8
- David Harari, Flèches de spécialisations en cohomologie étale et applications arithmétiques, Bull. Soc. Math. France 125 (1997), no. 2, 143–166 (French, with English and French summaries). MR 1478028
- David Harari, Quelques propriétés d’approximation reliées à la cohomologie galoisienne d’un groupe algébrique fini, Bull. Soc. Math. France 135 (2007), no. 4, 549–564 (French, with English and French summaries). MR 2439198, DOI 10.24033/bsmf.2545
- David Harari, Le défaut d’approximation forte pour les groupes algébriques commutatifs, Algebra Number Theory 2 (2008), no. 5, 595–611 (French, with English and French summaries). MR 2429455, DOI 10.2140/ant.2008.2.595
- Roger Heath-Brown and Alexei Skorobogatov, Rational solutions of certain equations involving norms, Acta Math. 189 (2002), no. 2, 161–177. MR 1961196, DOI 10.1007/BF02392841
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 199184, DOI 10.2307/1970547
- David Harari and Alexei N. Skorobogatov, Descent theory for open varieties, Torsors, étale homotopy and applications to rational points, London Math. Soc. Lecture Note Ser., vol. 405, Cambridge Univ. Press, Cambridge, 2013, pp. 250–279. MR 3077172
- Yonatan Harpaz and Olivier Wittenberg, On the fibration method for zero-cycles and rational points, Ann. of Math. (2) 183 (2016), no. 1, 229–295. MR 3432584, DOI 10.4007/annals.2016.183.1.5
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- Kazuya Kato and Shuji Saito, Global class field theory of arithmetic schemes, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 255–331. MR 862639, DOI 10.1090/conm/055.1/862639
- Giancarlo Lucchini Arteche, Approximation faible et principe de Hasse pour des espaces homogènes à stabilisateur fini résoluble, Math. Ann. 360 (2014), no. 3-4, 1021–1039 (French, with English and French summaries). MR 3273651, DOI 10.1007/s00208-014-1058-y
- Giancarlo Lucchini Arteche, Weak approximation for homogeneous spaces: reduction to the case with finite stabilizer, Math. Res. Lett. 24 (2017), no. 1, 1–19. MR 3662272, DOI 10.4310/MRL.2017.v24.n1.a1
- Giancarlo Lucchini Arteche, The unramified Brauer group of homogeneous spaces with finite stabilizer, Trans. Amer. Math. Soc. 372 (2019), no. 8, 5393–5408. MR 4014281, DOI 10.1090/tran/7796
- Yongqi Liang, Arithmetic of 0-cycles on varieties defined over number fields, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 1, 35–56 (2013) (English, with English and French summaries). MR 3087389, DOI 10.24033/asens.2184
- Y. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars Éditeur, Paris, 1971, pp. 401–411. MR 427322
- Masayoshi Nagata, A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ. 3 (1963), 89–102. MR 158892, DOI 10.1215/kjm/1250524859
- Jürgen Neukirch, On solvable number fields, Invent. Math. 53 (1979), no. 2, 135–164. MR 560411, DOI 10.1007/BF01390030
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026, DOI 10.1007/978-3-540-37889-1
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- Maxwell Rosenlicht, Some rationality questions on algebraic groups, Ann. Mat. Pura Appl. (4) 43 (1957), 25–50. MR 90101, DOI 10.1007/BF02411903
- David J. Saltman, Noether’s problem over an algebraically closed field, Invent. Math. 77 (1984), no. 1, 71–84. MR 751131, DOI 10.1007/BF01389135
- J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80 (French). MR 631309, DOI 10.1515/crll.1981.327.12
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
- Jean-Pierre Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1971 (French). Deuxième édition, refondue. MR 352231
- Jean-Pierre Serre, Topics in Galois theory, 2nd ed., Research Notes in Mathematics, vol. 1, A K Peters, Ltd., Wellesley, MA, 2008. With notes by Henri Darmon. MR 2363329
- A. N. Skorobogatov, On the fibration method for proving the Hasse principle and weak approximation, Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhäuser Boston, Boston, MA, 1990, pp. 205–219. MR 1104707
- Alexei N. Skorobogatov, Descent on fibrations over the projective line, Amer. J. Math. 118 (1996), no. 5, 905–923. MR 1408492
- Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. MR 1845760, DOI 10.1017/CBO9780511549588
- V. E. Voskresenskiĭ, Algebraic groups and their birational invariants, Translations of Mathematical Monographs, vol. 179, American Mathematical Society, Providence, RI, 1998. Translated from the Russian manuscript by Boris Kunyavski [Boris È. Kunyavskiĭ]. MR 1634406, DOI 10.1090/mmono/179
- Shianghaw Wang, A counter-example to Grunwald’s theorem, Ann. of Math. (2) 49 (1948), 1008–1009. MR 26992, DOI 10.2307/1969410
- D. Wei, Open descent and strong approximation, arXiv:1604.00610 (2016).
- Olivier Wittenberg, Zéro-cycles sur les fibrations au-dessus d’une courbe de genre quelconque, Duke Math. J. 161 (2012), no. 11, 2113–2166 (French, with English and French summaries). MR 2957699, DOI 10.1215/00127094-1699441
- O. Wittenberg, Rational points and zero-cycles on rationally connected varieties over number fields, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 597–635.
Bibliographic Information
- Yonatan Harpaz
- Affiliation: Institut Galilée, Université Paris 13, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
- MR Author ID: 1046291
- Email: harpaz@math.univ-paris13.fr
- Olivier Wittenberg
- Affiliation: Département de mathématiques et applications, École normale supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France
- MR Author ID: 729226
- Email: wittenberg@dma.ens.fr
- Received by editor(s): March 11, 2018
- Received by editor(s) in revised form: September 23, 2019, and October 14, 2019
- Published electronically: March 10, 2020
- © Copyright 2020 Yonatan Harpaz and Olivier Wittenberg
- Journal: J. Amer. Math. Soc. 33 (2020), 775-805
- MSC (2010): Primary 11G35, 12F12, 14C25, 14G05, 14M17
- DOI: https://doi.org/10.1090/jams/943
- MathSciNet review: 4127903