## Large genus asymptotics for volumes of strata of abelian differentials

HTML articles powered by AMS MathViewer

- by
Amol Aggarwal; with an appendix by Anton Zorich
**HTML**| PDF - J. Amer. Math. Soc.
**33**(2020), 941-989 Request permission

## Abstract:

In this paper we consider the large genus asymptotics for Masur-Veech volumes of arbitrary strata of Abelian differentials. Through a combinatorial analysis of an algorithm proposed in 2002 by Eskin-Okounkov to exactly evaluate these quantities, we show that the volume $\nu _1 \big ( \mathcal {H}_1 (m) \big )$ of a stratum indexed by a partition $m = (m_1, m_2, \ldots , m_n)$ is $\big ( 4 + o(1) \big ) \prod _{i = 1}^n (m_i + 1)^{-1}$, as $2g - 2 = \sum _{i = 1}^n m_i$ tends to $\infty$. This confirms a prediction of Eskin-Zorich and generalizes some of the recent results of Chen-Möller-Zagier and Sauvaget, who established these limiting statements in the special cases $m = 1^{2g - 2}$ and $m = (2g - 2)$, respectively.

We also include an appendix by Anton Zorich that uses our main result to deduce the large genus asymptotics for Siegel-Veech constants that count certain types of saddle connections.

## References

- Amol Aggarwal,
*Large genus asymptotics for Siegel-Veech constants*, Geom. Funct. Anal.**29**(2019), no. 5, 1295–1324. MR**4025514**, DOI 10.1007/s00039-019-00509-0 - J. E. Andersen, G. Borot, S. Charbonnier, V. Delecroix, A. Giacchetto, D. Lewanski, and C. Wheeler,
*Topological Recursion for Masur-Veech Volumes*, preprint, arXiv:1905.10352. - Dawei Chen, Martin Möller, and Don Zagier,
*Quasimodularity and large genus limits of Siegel-Veech constants*, J. Amer. Math. Soc.**31**(2018), no. 4, 1059–1163. MR**3836563**, DOI 10.1090/jams/900 - Dawei Chen, Martin Möller, Adrien Sauvaget, and Don Zagier,
*Masur-Veech volumes and intersection theory on moduli spaces of Abelian differentials*, Invent. Math.**222**(2020), no. 1, 283–373. MR**4145791**, DOI 10.1007/s00222-020-00969-4 - V. Delecroix, E. Goujard, P. Zograf, and A. Zorich,
*Contribution of One-Cylinder Square-Tiled Surfaces to Masur-Veech Volumes*, With an Appendix by P. Engel, Asterisque,**415**(2020), pp. 223-274. - V. Delecroix, E. Goujard, P. Zograf, and A. Zorich,
*Masur-Veech Volumes, Frequencies of Simple Closed Geodesics, and Intersection Numbers of Moduli Spaces of Curves*, preprint, arXiv:1908.08611. - Alex Eskin, Maxim Kontsevich, and Anton Zorich,
*Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow*, Publ. Math. Inst. Hautes Études Sci.**120**(2014), 207–333. MR**3270590**, DOI 10.1007/s10240-013-0060-3 - Alex Eskin and Howard Masur,
*Asymptotic formulas on flat surfaces*, Ergodic Theory Dynam. Systems**21**(2001), no. 2, 443–478. MR**1827113**, DOI 10.1017/S0143385701001225 - Alex Eskin, Howard Masur, and Anton Zorich,
*Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants*, Publ. Math. Inst. Hautes Études Sci.**97**(2003), 61–179. MR**2010740**, DOI 10.1007/s10240-003-0015-1 - Alex Eskin and Andrei Okounkov,
*Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials*, Invent. Math.**145**(2001), no. 1, 59–103. MR**1839286**, DOI 10.1007/s002220100142 - Alex Eskin and Anton Zorich,
*Volumes of strata of Abelian differentials and Siegel-Veech constants in large genera*, Arnold Math. J.**1**(2015), no. 4, 481–488. MR**3434506**, DOI 10.1007/s40598-015-0028-0 - Maxim Kontsevich and Anton Zorich,
*Connected components of the moduli spaces of Abelian differentials with prescribed singularities*, Invent. Math.**153**(2003), no. 3, 631–678. MR**2000471**, DOI 10.1007/s00222-003-0303-x - Howard Masur,
*Interval exchange transformations and measured foliations*, Ann. of Math. (2)**115**(1982), no. 1, 169–200. MR**644018**, DOI 10.2307/1971341 - Howard Masur and Serge Tabachnikov,
*Rational billiards and flat structures*, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015–1089. MR**1928530**, DOI 10.1016/S1874-575X(02)80015-7 - Maryam Mirzakhani,
*Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus*, J. Differential Geom.**94**(2013), no. 2, 267–300. MR**3080483** - Maryam Mirzakhani and Peter Zograf,
*Towards large genus asymptotics of intersection numbers on moduli spaces of curves*, Geom. Funct. Anal.**25**(2015), no. 4, 1258–1289. MR**3385633**, DOI 10.1007/s00039-015-0336-5 - Adrien Sauvaget,
*Cohomology classes of strata of differentials*, Geom. Topol.**23**(2019), no. 3, 1085–1171. MR**3956890**, DOI 10.2140/gt.2019.23.1085 - Adrien Sauvaget,
*Volumes and Siegel-Veech constants of $\mathcal {H}(2G-2)$ and Hodge integrals*, Geom. Funct. Anal.**28**(2018), no. 6, 1756–1779. MR**3881834**, DOI 10.1007/s00039-018-0468-5 - A. Sauvaget,
*The Large Genus Asymptotic Expansion of Masur-Veech Volumes*, Int. Math. Res. Not. IMRN, 2019, https://doi.org/10.1093/imrn/rnz276. - William A. Veech,
*Gauss measures for transformations on the space of interval exchange maps*, Ann. of Math. (2)**115**(1982), no. 1, 201–242. MR**644019**, DOI 10.2307/1971391 - Yaroslav Vorobets,
*Periodic geodesics on generic translation surfaces*, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 205–258. MR**2180238**, DOI 10.1090/conm/385/07199 - Alex Wright,
*Translation surfaces and their orbit closures: an introduction for a broad audience*, EMS Surv. Math. Sci.**2**(2015), no. 1, 63–108. MR**3354955**, DOI 10.4171/EMSS/9 - P. Zograf,
*On the Large Genus Asymptotics of Weil-Petersson Volumes*, preprint, arXiv:0812.0544. - Anton Zorich,
*Flat surfaces*, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437–583. MR**2261104**, DOI 10.1007/978-3-540-31347-2_{1}3 - Anton Zorich,
*Square tiled surfaces and Teichmüller volumes of the moduli spaces of abelian differentials*, Rigidity in dynamics and geometry (Cambridge, 2000) Springer, Berlin, 2002, pp. 459–471. MR**1919417**

## Additional Information

**Anton Zorich**- Affiliation: Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MA 02138 – and – Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027; Center for Advanced Studies, Skoltech; Institut de Mathématiques de Jussieu – Paris Rive Gauche, Bâtiment Sophie Germain, Case 7012, 8 Place Aurélie Nemours, 75205 Paris Cedex 13, France
- Received by editor(s): June 4, 2018
- Received by editor(s) in revised form: June 17, 2019, and October 30, 2019
- Published electronically: September 28, 2020
- Additional Notes: This work was partially supported by the NSF Graduate Research Fellowship under grant numbers DGE1144152 and DMS-1664619.
- © Copyright 2020 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**33**(2020), 941-989 - MSC (2010): Primary 32G15; Secondary 37P45, 05A16
- DOI: https://doi.org/10.1090/jams/947
- MathSciNet review: 4155217