Cartier modules and cyclotomic spectra
HTML articles powered by AMS MathViewer
- by Benjamin Antieau and Thomas Nikolaus;
- J. Amer. Math. Soc. 34 (2021), 1-78
- DOI: https://doi.org/10.1090/jams/951
- Published electronically: December 2, 2020
- HTML | PDF | Request permission
Abstract:
We construct and study a $t$-structure on $p$-typical cyclotomic spectra and explain how to recover crystalline cohomology of smooth schemes over perfect fields using this $t$-structure. Our main tool is a new approach to $p$-typical cyclotomic spectra via objects we call $p$-typical topological Cartier modules. Using these, we prove that the heart of the cyclotomic $t$-structure is the full subcategory of derived $V$-complete objects in the abelian category of $p$-typical Cartier modules.References
- Benjamin Antieau, Periodic cyclic homology and derived de Rham cohomology, Ann. K-Theory 4 (2019), no. 3, 505–519. MR 4043467, DOI 10.2140/akt.2019.4.505
- Benjamin Antieau, Akhil Mathew, and Thomas Nikolaus, On the Blumberg-Mandell Künneth theorem for TP, Selecta Math. (N.S.) 24 (2018), no. 5, 4555–4576. MR 3874698, DOI 10.1007/s00029-018-0427-x
- Benjamin Antieau and Thomas Nikolaus, Crystals and cyclotomic spectra, in preparation.
- M. Artin and B. Mazur, Formal groups arising from algebraic varieties, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 1, 87–131. MR 457458, DOI 10.24033/asens.1322
- Clark Barwick, Spectral Mackey functors and equivariant algebraic $K$-theory (I), Adv. Math. 304 (2017), 646–727. MR 3558219, DOI 10.1016/j.aim.2016.08.043
- Clark Barwick and Saul Glasman, Cyclonic spectra, cyclotomic spectra, and a conjecture of Kaledin, arXiv e-prints, 2016, available at http://arxiv.org/abs/1602.02163.
- Clark Barwick and Saul Glasman, A note on stable recollements, arXiv e-prints, 2016, available at http://arxiv.org/abs/1607.02064.
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171.
- Bhargav Bhatt, Jacob Lurie, and Akhil Mathew, Revisiting the de Rham–Witt complex, arXiv e-prints, 2018, available at http://arxiv.org/abs/1805.05501.
- Bhargav Bhatt, Matthew Morrow, and Peter Scholze, Topological Hochschild homology and integral $p$-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199–310. MR 3949030, DOI 10.1007/s10240-019-00106-9
- Bhargav Bhatt and Peter Scholze, The pro-étale topology for schemes, Astérisque 369 (2015), 99–201 (English, with English and French summaries). MR 3379634
- Andrew J. Blumberg and Michael A. Mandell, The homotopy theory of cyclotomic spectra, Geom. Topol. 19 (2015), no. 6, 3105–3147. MR 3447100, DOI 10.2140/gt.2015.19.3105
- M. Bökstedt, W. C. Hsiang, and I. Madsen, The cyclotomic trace and algebraic $K$-theory of spaces, Invent. Math. 111 (1993), no. 3, 465–539. MR 1202133, DOI 10.1007/BF01231296
- Victor Buchstaber and Andrey Lazarev, Dieudonné modules and $p$-divisible groups associated with Morava $K$-theory of Eilenberg-Mac Lane spaces, Algebr. Geom. Topol. 7 (2007), 529–564. MR 2308956, DOI 10.2140/agt.2007.7.529
- Dustin Clausen and Akhil Mathew, Hyperdescent and etale K-theory, 2019, available at http://arxiv.org/abs/1905.06611.
- Michel Demazure, Lectures on $p$-divisible groups, Lecture Notes in Mathematics, Vol. 302, Springer-Verlag, Berlin-New York, 1972. MR 344261, DOI 10.1007/BFb0060741
- Elden Elmanto, Topological periodic cyclic homology of smooth $\mathbb {F}_p$-algebras, Oberwolfach Reports 15/2018, Arbeitsgemeinschaft: Topological cyclic homology, 2018, pp. 126-131, available at https://eelmanto.files.wordpress.com/2018/05/oberwolfach-report-elden-elmanto-may-241.pdf.
- Ofer Gabber and Lorenzo Ramero, Almost ring theory, Lecture Notes in Mathematics, vol. 1800, Springer-Verlag, Berlin, 2003. MR 2004652, DOI 10.1007/b10047
- Thomas Geisser and Lars Hesselholt, Topological cyclic homology of schemes, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 41–87. MR 1743237, DOI 10.1090/pspum/067/1743237
- Paul G. Goerss, Hopf rings, Dieudonné modules, and $E_*\Omega ^2S^3$, Homotopy invariant algebraic structures (Baltimore, MD, 1998) Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 115–174. MR 1718079, DOI 10.1090/conm/239/03600
- J. P. C. Greenlees, $K$-homology of universal spaces and local cohomology of the representation ring, Topology 32 (1993), no. 2, 295–308. MR 1217070, DOI 10.1016/0040-9383(93)90021-M
- Bertrand Guillou and Peter May, Models of G-spectra as presheaves of spectra, ArXiv e-prints (2011), available at http://arxiv.org/abs/1110.3571.
- J.H.C. Gunwardena, Segal’s conjecture for cyclic groups of (odd) prime order, J. T. Knight Prize Essay, Cambridge, 1980.
- Lars Hesselholt, On the $p$-typical curves in Quillen’s $K$-theory, Acta Math. 177 (1996), no. 1, 1–53. MR 1417085, DOI 10.1007/BF02392597
- Lars Hesselholt, Witt vectors of non-commutative rings and topological cyclic homology, Acta Math. 178 (1997), no. 1, 109–141. MR 1448712, DOI 10.1007/BF02392710
- Lars Hesselholt, Correction to: “Witt vectors of non-commutative rings and topological cyclic homology” [Acta Math. 178 (1997), no. 1, 109–141; MR1448712], Acta Math. 195 (2005), 55–60. MR 2233685, DOI 10.1007/BF02588050
- Lars Hesselholt, On the topological cyclic homology of the algebraic closure of a local field, An alpine anthology of homotopy theory, Contemp. Math., vol. 399, Amer. Math. Soc., Providence, RI, 2006, pp. 133–162. MR 2222509, DOI 10.1090/conm/399/07517
- Lars Hesselholt, The big de Rham-Witt complex, Acta Math. 214 (2015), no. 1, 135–207. MR 3316757, DOI 10.1007/s11511-015-0124-y
- Lars Hesselholt, Topological Hochschild homology and the Hasse-Weil zeta function, An alpine bouquet of algebraic topology, Contemp. Math., vol. 708, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 157–180. MR 3807755, DOI 10.1090/conm/708/14264
- Lars Hesselholt and Ib Madsen, On the $K$-theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997), no. 1, 29–101. MR 1410465, DOI 10.1016/0040-9383(96)00003-1
- Lars Hesselholt and Ib Madsen, On the $K$-theory of local fields, Ann. of Math. (2) 158 (2003), no. 1, 1–113. MR 1998478, DOI 10.4007/annals.2003.158.1
- Lars Hesselholt and Ib Madsen, On the De Rham-Witt complex in mixed characteristic, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 1, 1–43 (English, with English and French summaries). MR 2050204, DOI 10.1016/j.ansens.2003.06.001
- G. Hochschild, Bertram Kostant, and Alex Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383–408. MR 142598, DOI 10.1090/S0002-9947-1962-0142598-8
- Luc Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, 501–661 (French). MR 565469, DOI 10.24033/asens.1374
- Luc Illusie and Michel Raynaud, Les suites spectrales associées au complexe de de Rham-Witt, Inst. Hautes Études Sci. Publ. Math. 57 (1983), 73–212 (French). MR 699058, DOI 10.1007/BF02698774
- D. Kaledin, Motivic structures in non-commutative geometry, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 461–496. MR 2827805
- D. B. Kaledin, Cyclotomic complexes, Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013), no. 5, 3–70 (Russian, with Russian summary); English transl., Izv. Math. 77 (2013), no. 5, 855–916. MR 3137194, DOI 10.1070/im2013v077n05abeh002663
- Karlheinz Knapp, On the $K$-homology of classifying spaces, Math. Ann. 233 (1978), no. 2, 103–124. MR 470961, DOI 10.1007/BF01421919
- Achim Krause and Thomas Nikolaus, Lectures on topological Hochschild homology and cyclotomic spectra, 2018, available at https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/papers.html. Version accessed 12 July 2018.
- Wen Hsiung Lin, On conjectures of Mahowald, Segal and Sullivan, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 3, 449–458. MR 556925, DOI 10.1017/S0305004100056887
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Jacob Lurie, Higher algebra, 2017, available at http://www.math.harvard.edu/~lurie/. Version dated 18 September 2017.
- Jacob Lurie, Spectral algebraic geometry, 2018, available at http://www.math.harvard.edu/~lurie/. Version dated 3 February 2018.
- Akhil Mathew, THH and base-change for Galois extensions of ring spectra, Algebr. Geom. Topol. 17 (2017), no. 2, 693–704. MR 3623668, DOI 10.2140/agt.2017.17.693
- Akhil Mathew, Niko Naumann, and Justin Noel, Nilpotence and descent in equivariant stable homotopy theory, Adv. Math. 305 (2017), 994–1084. MR 3570153, DOI 10.1016/j.aim.2016.09.027
- Thomas Nikolaus and Peter Scholze, On topological cyclic homology, Acta Math. 221 (2018), no. 2, 203–409. MR 3904731, DOI 10.4310/ACTA.2018.v221.n2.a1
- Stefan Schwede, Lecture notes on equivariant stable homotopy theory, 2018, available at http://www.math.uni-bonn.de/people/schwede/equivariant.pdf.
- George Wilson, $K$-theory invariants for unitary $G$-bordism, Quart. J. Math. Oxford Ser. (2) 24 (1973), 499–526. MR 328963, DOI 10.1093/qmath/24.1.499
- Thomas Zink, Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 68, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1984 (German). With English, French and Russian summaries. MR 767090
Bibliographic Information
- Benjamin Antieau
- Affiliation: Department of Mathematics, University of Illinois at Chicago, Statistics and Computer Science, 851 South Morgan Street, Chicago, Illinois, 60607 – and – Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL, 60208
- MR Author ID: 924946
- Email: antieau@northwestern.edu
- Thomas Nikolaus
- Affiliation: FB Mathematik und Informatik, Universität Münster, Einsteinstrasse 62 D-48149, Münster, Germany
- MR Author ID: 902273
- Email: nikolaus@uni-muenster.de
- Received by editor(s): October 5, 2018
- Received by editor(s) in revised form: January 8, 2020
- Published electronically: December 2, 2020
- Additional Notes: The first author was supported by NSF Grant DMS-1552766.
- © Copyright 2020 American Mathematical Society
- Journal: J. Amer. Math. Soc. 34 (2021), 1-78
- MSC (2010): Primary 14F30, 14L05, 13D03
- DOI: https://doi.org/10.1090/jams/951
- MathSciNet review: 4188814