The test function conjecture for parahoric local models
HTML articles powered by AMS MathViewer
- by Thomas J. Haines and Timo Richarz;
- J. Amer. Math. Soc. 34 (2021), 135-218
- DOI: https://doi.org/10.1090/jams/955
- Published electronically: December 7, 2020
- HTML | PDF | Request permission
Abstract:
We prove the test function conjecture of Kottwitz and the first-named author for local models of Shimura varieties with parahoric level structure, and their analogues in equal characteristic.References
- J. Alper, J. Hall, and D. Rydh, A Luna étale slice theorem for algebraic stacks, available at arXiv:1504.06467.
- Sivaramakrishna Anantharaman, Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Sur les groupes algébriques, Supplément au Bull. Soc. Math. France, Tome 101, Soc. Math. France, Paris, 1973, pp. 5–79 (French). MR 335524, DOI 10.24033/msmf.109
- E. Arasteh Rad and U. Hartl, Langlands-Rapoport conjecture over function fields, arXiv:1605.01575.
- Sergey Arkhipov and Roman Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, Israel J. Math. 170 (2009), 135–183. With an appendix by Bezrukavnikov and Ivan Mirković. MR 2506322, DOI 10.1007/s11856-009-0024-y
- Arnaud Beauville and Yves Laszlo, Un lemme de descente, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 3, 335–340 (French, with English and French summaries). MR 1320381
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, preprint (1999) available at http://www.math.utexas.edu/users/benzvi/Langlands.html.
- Mikhail Borovoi, Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (1998), no. 626, viii+50. MR 1401491, DOI 10.1090/memo/0626
- Tom Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), no. 3, 209–216. MR 1996415, DOI 10.1007/s00031-003-0606-4
- A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), no. 2, 287–384. MR 1933587, DOI 10.1007/s00222-002-0237-8
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- Brian Conrad, Ofer Gabber, and Gopal Prasad, Pseudo-reductive groups, New Mathematical Monographs, vol. 17, Cambridge University Press, Cambridge, 2010. MR 2723571, DOI 10.1017/CBO9780511661143
- Ching-Li Chai and Peter Norman, Singularities of the $\Gamma _0(p)$-level structure, J. Algebraic Geom. 1 (1992), no. 2, 251–278. MR 1144439
- Brian Conrad, Reductive group schemes, Autour des schémas en groupes. Vol. I, Panor. Synthèses, vol. 42/43, Soc. Math. France, Paris, 2014, pp. 93–444 (English, with English and French summaries). MR 3362641
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325, DOI 10.1007/978-3-540-38955-2
- Mark Andrea de Cataldo, Thomas J. Haines, and Li Li, Frobenius semisimplicity for convolution morphisms, Math. Z. 289 (2018), no. 1-2, 119–169. MR 3803785, DOI 10.1007/s00209-017-1946-4
- A. J. de Jong, The moduli spaces of principally polarized abelian varieties with $\Gamma _0(p)$-level structure, J. Algebraic Geom. 2 (1993), no. 4, 667–688. MR 1227472
- Pierre Deligne and Georgios Pappas, Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Math. 90 (1994), no. 1, 59–79 (French). MR 1266495
- P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin-New York, 1973, pp. 143–316 (French). MR 337993
- V. G. Drinfeld, On algebraic spaces with an action of $\mathbb {G}_m$, available at arXiv:math/1308.2604.
- V. Drinfeld and D. Gaitsgory, On a theorem of Braden, Transform. Groups 19 (2014), no. 2, 313–358. MR 3200429, DOI 10.1007/s00031-014-9267-8
- Gerd Faltings, Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. (JEMS) 5 (2003), no. 1, 41–68. MR 1961134, DOI 10.1007/s10097-002-0045-x
- Ofer Gabber, Philippe Gille, and Laurent Moret-Bailly, Fibrés principaux sur les corps valués henséliens, Algebr. Geom. 1 (2014), no. 5, 573–612 (French, with English and French summaries). MR 3296806, DOI 10.14231/AG-2014-025
- D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), no. 2, 253–280. MR 1826370, DOI 10.1007/s002220100122
- V. Ginzburg: Perverse sheaves on a loop group and Langlands’ duality, preprint (1995), arXiv:alg-geom/9511007.
- Ulrich Görtz, Computing the alternating trace of Frobenius on the sheaves of nearby cycles on local models for $\rm GL_4$ and $\rm GL_5$, J. Algebra 278 (2004), no. 1, 148–172. MR 2068071, DOI 10.1016/j.jalgebra.2003.07.002
- Ulrich Görtz, Alcove walks and nearby cycles on affine flag manifolds, J. Algebraic Combin. 26 (2007), no. 4, 415–430. MR 2341858, DOI 10.1007/s10801-007-0063-6
- Ulrich Görtz, Affine Springer fibers and affine Deligne-Lusztig varieties, Affine flag manifolds and principal bundles, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2010, pp. 1–50. MR 3013026, DOI 10.1007/978-3-0346-0288-4_{1}
- Ulrich Görtz, Thomas J. Haines, Robert E. Kottwitz, and Daniel C. Reuman, Dimensions of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 3, 467–511 (English, with English and French summaries). MR 2265676, DOI 10.1016/j.ansens.2005.12.004
- Ulrich Görtz, Thomas J. Haines, Robert E. Kottwitz, and Daniel C. Reuman, Affine Deligne-Lusztig varieties in affine flag varieties, Compos. Math. 146 (2010), no. 5, 1339–1382. MR 2684303, DOI 10.1112/S0010437X10004823
- Ulrich Görtz and Torsten Wedhorn, Algebraic geometry I, Advanced Lectures in Mathematics, Vieweg + Teubner, Wiesbaden, 2010. Schemes with examples and exercises. MR 2675155, DOI 10.1007/978-3-8348-9722-0
- Thomas J. Haines, Test functions for Shimura varieties: the Drinfeld case, Duke Math. J. 106 (2001), no. 1, 19–40. MR 1810365, DOI 10.1215/S0012-7094-01-10612-1
- Thomas J. Haines, Introduction to Shimura varieties with bad reduction of parahoric type, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 583–642. MR 2192017
- Thomas J. Haines, The stable Bernstein center and test functions for Shimura varieties, Automorphic forms and Galois representations. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 415, Cambridge Univ. Press, Cambridge, 2014, pp. 118–186. MR 3444233
- Thomas J. Haines, On Satake parameters for representations with parahoric fixed vectors, Int. Math. Res. Not. IMRN 20 (2015), 10367–10398. MR 3455870, DOI 10.1093/imrn/rnu254
- Thomas J. Haines, Correction to “On Satake parameters for representations with parahoric fixed vectors” [ MR3455870], Int. Math. Res. Not. IMRN 13 (2017), 4160–4170. MR 3671514, DOI 10.1093/imrn/rnx088
- Thomas J. Haines, Dualities for root systems with automorphisms and applications to non-split groups, Represent. Theory 22 (2018), 1–26. MR 3772644, DOI 10.1090/ert/512
- T. Haines and B. C. Ngô, Nearby cycles for local models of some Shimura varieties, Compositio Math. 133 (2002), no. 2, 117–150. MR 1923579, DOI 10.1023/A:1019666710051
- G. Pappas and M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 118–198. With an appendix by T. Haines and Rapoport. MR 2435422, DOI 10.1016/j.aim.2008.04.006
- Thomas J. Haines and Michael Rapoport, Shimura varieties with $\Gamma _1(p)$-level via Hecke algebra isomorphisms: the Drinfeld case, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 5, 719–785 (2013) (English, with English and French summaries). MR 3053008, DOI 10.24033/asens.2177
- Thomas J. Haines and Sean Rostami, The Satake isomorphism for special maximal parahoric Hecke algebras, Represent. Theory 14 (2010), 264–284. MR 2602034, DOI 10.1090/S1088-4165-10-00370-5
- Thomas J. Haines and Timo Richarz, The test function conjecture for local models of Weil-restricted groups, Compos. Math. 156 (2020), no. 7, 1348–1404. MR 4120166, DOI 10.1112/s0010437x20007162
- Jochen Heinloth, Uniformization of $\scr G$-bundles, Math. Ann. 347 (2010), no. 3, 499–528. MR 2640041, DOI 10.1007/s00208-009-0443-4
- Jochen Heinloth, Hilbert-Mumford stability on algebraic stacks and applications to $\mathcal G$-bundles on curves, Épijournal Géom. Algébrique 1 (2017), Art. 11, 37. MR 3758902, DOI 10.46298/epiga.2018.volume1.2062
- Jochen Heinloth, Bao-Châu Ngô, and Zhiwei Yun, Kloosterman sheaves for reductive groups, Ann. of Math. (2) 177 (2013), no. 1, 241–310. MR 2999041, DOI 10.4007/annals.2013.177.1.5
- Luc Illusie, Autour du théorème de monodromie locale, Astérisque 223 (1994), 9–57 (French). Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293970
- M. Kisin and G. Pappas, Integral models of Shimura varieties with parahoric level structure, Publ. Math. Inst. Hautes Études Sci. 128 (2018), 121–218. MR 3905466, DOI 10.1007/s10240-018-0100-0
- Robert E. Kottwitz, Shimura varieties and twisted orbital integrals, Math. Ann. 269 (1984), no. 3, 287–300. MR 761308, DOI 10.1007/BF01450697
- Robert E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339. MR 1485921, DOI 10.1023/A:1000102604688
- N. Krämer, Local models for ramified unitary groups, Abh. Math. Sem. Univ. Hamburg 73 (2003), 67–80. MR 2028507, DOI 10.1007/BF02941269
- R. P. Langlands, Some contemporary problems with origins in the Jugendtraum, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Proc. Sympos. Pure Math., Vol. XXVIII, Amer. Math. Soc., Providence, RI, 1976, pp. 401–418. MR 437500
- Yves Laszlo and Christoph Sorger, The line bundles on the moduli of parabolic $G$-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 4, 499–525 (English, with English and French summaries). MR 1456243, DOI 10.1016/S0012-9593(97)89929-6
- Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927, DOI 10.1007/978-3-540-24899-6
- Gérard Laumon and Bao Châu Ngô, Le lemme fondamental pour les groupes unitaires, Ann. of Math. (2) 168 (2008), no. 2, 477–573 (French, with English summary). MR 2434884, DOI 10.4007/annals.2008.168.477
- Brandon Levin, Local models for Weil-restricted groups, Compos. Math. 152 (2016), no. 12, 2563–2601. MR 3594288, DOI 10.1112/S0010437X1600765X
- João Lourenço, Grassmanniennes affines tordues sur les entiers, preprint 2019, arXiv:1912.11918.
- George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- Benedictus Margaux, Smoothness of limit functors, Proc. Indian Acad. Sci. Math. Sci. 125 (2015), no. 2, 161–165. MR 3361508, DOI 10.1007/s12044-015-0234-7
- I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, DOI 10.4007/annals.2007.166.95
- Hiraku Nakajima, Lectures on perverse sheaves on instanton moduli spaces, Geometry of moduli spaces and representation theory, IAS/Park City Math. Ser., vol. 24, Amer. Math. Soc., Providence, RI, 2017, pp. 381–436. MR 3752464
- B. C. Ngô and P. Polo, Résolutions de Demazure affines et formule de Casselman-Shalika géométrique, J. Algebraic Geom. 10 (2001), no. 3, 515–547 (French, with English summary). MR 1832331
- G. Pappas and M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 118–198. With an appendix by T. Haines and Rapoport. MR 2435422, DOI 10.1016/j.aim.2008.04.006
- Georgios Pappas, Michael Rapoport, and Brian Smithling, Local models of Shimura varieties, I. Geometry and combinatorics, Handbook of moduli. Vol. III, Adv. Lect. Math. (ALM), vol. 26, Int. Press, Somerville, MA, 2013, pp. 135–217. MR 3135437
- G. Pappas and X. Zhu, Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math. 194 (2013), no. 1, 147–254. MR 3103258, DOI 10.1007/s00222-012-0442-z
- M. Rapoport, On the bad reduction of Shimura varieties, Automorphic forms, Shimura varieties, and $L$-functions, Vol. II (Ann Arbor, MI, 1988) Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990, pp. 253–321. MR 1044832
- Michael Rapoport, A guide to the reduction modulo $p$ of Shimura varieties, Astérisque 298 (2005), 271–318 (English, with English and French summaries). Automorphic forms. I. MR 2141705
- M. Rapoport and Th. Zink, Period spaces for $p$-divisible groups, Annals of Mathematics Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996. MR 1393439, DOI 10.1515/9781400882601
- Timo Richarz, A new approach to the geometric Satake equivalence, Doc. Math. 19 (2014), 209–246. MR 3178249
- T. Richarz: Affine Grassmannians and Geometric Satake Equivalences, Langlands correspondence and constructive Galois theory, Oberwolfach Reports 11, Issue 1 (2014) 287-334.
- Xinwen Zhu, The geometric Satake correspondence for ramified groups, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 2, 409–451 (English, with English and French summaries). MR 3346175, DOI 10.24033/asens.2248
- Timo Richarz, Affine Grassmannians and geometric Satake equivalences, Int. Math. Res. Not. IMRN 12 (2016), 3717–3767. MR 3544618, DOI 10.1093/imrn/rnv226
- Timo Richarz, On the Iwahori Weyl group, Bull. Soc. Math. France 144 (2016), no. 1, 117–124. MR 3481263, DOI 10.24033/bsmf.2708
- Timo Richarz, Spaces with $\Bbb G_m$-action, hyperbolic localization and nearby cycles, J. Algebraic Geom. 28 (2019), no. 2, 251–289. MR 3912059, DOI 10.1090/jag/710
- T. Richarz: Erratum to “Affine Grassmannians and Geometric Satake Equivalences”, Int. Math. Res. Not., rnz210, https://doi.org/10.1093/imrn/rnz210.
- Sean Rostami, The Bernstein presentation for general connected reductive groups, J. Lond. Math. Soc. (2) 91 (2015), no. 2, 514–536. MR 3355113, DOI 10.1112/jlms/jdu080
- Sean Rostami, Kottwitz’s nearby cycles conjecture for a class of unitary Shimura varieties, Selecta Math. (N.S.) 23 (2017), no. 1, 643–719. MR 3595903, DOI 10.1007/s00029-016-0252-z
- P. Scholze and J. Weinstein, Berkeley lectures on $p$-adic geometry, available at http://www.math.uni-bonn.de/people/scholze/.
- A. Grothendieck: Séminaire de Géométrie Algébrique du Bois Marie - Revêtements étales et groupe fondamental, Lecture notes in mathematics 224, Springer-Verlag (1971), xxii+447.
- Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 274458
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
- Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, Vol. 340, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II); Dirigé par P. Deligne et N. Katz. MR 354657
- Stacks Project, available at http://stacks.math.columbia.edu/.
- Jacques Tits, Le problème des mots dans les groupes de Coxeter, Symposia Mathematica (INDAM, Rome, 1967/68) Academic Press, London-New York, 1969, pp. 175–185 (French). MR 254129
- C. Xue, Cohomologie cuspidale des champs de Chtoucas, Université Paris-Saclay, NNT:2017SACLS125, 2017.
- R. Zhou, Mod-$p$ isogeny classes on Shimura varieties with pararhoric level structure, Preprint available at http://www.math.harvard.edu/~rzhou/.
- Xinwen Zhu, Affine Demazure modules and $T$-fixed point subschemes in the affine Grassmannian, Adv. Math. 221 (2009), no. 2, 570–600. MR 2508931, DOI 10.1016/j.aim.2009.01.003
- Xinwen Zhu, On the coherence conjecture of Pappas and Rapoport, Ann. of Math. (2) 180 (2014), no. 1, 1–85. MR 3194811, DOI 10.4007/annals.2014.180.1.1
- Xinwen Zhu, The geometric Satake correspondence for ramified groups, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 2, 409–451 (English, with English and French summaries). MR 3346175, DOI 10.24033/asens.2248
- Xinwen Zhu, An introduction to affine Grassmannians and the geometric Satake equivalence, Geometry of moduli spaces and representation theory, IAS/Park City Math. Ser., vol. 24, Amer. Math. Soc., Providence, RI, 2017, pp. 59–154. MR 3752460
Bibliographic Information
- Thomas J. Haines
- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742-4015
- MR Author ID: 659516
- Email: tjh@math.umd.edu
- Timo Richarz
- Affiliation: Fachbereich Mathematik, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
- MR Author ID: 1004551
- Email: richarz@mathematik.tu-darmstadt.de
- Received by editor(s): April 9, 2018
- Received by editor(s) in revised form: February 26, 2020, March 19, 2020, and March 26, 2020
- Published electronically: December 7, 2020
- Additional Notes: The research of the first author was partially supported by NSF DMS-1406787 and by Simons Fellowship 399424.
The research of the second author was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 394587809. - © Copyright 2020 American Mathematical Society
- Journal: J. Amer. Math. Soc. 34 (2021), 135-218
- MSC (2010): Primary 14G35, 14M15, 20G05
- DOI: https://doi.org/10.1090/jams/955
- MathSciNet review: 4188816