Framed motives of algebraic varieties (after V. Voevodsky)
Authors:
Grigory Garkusha and Ivan Panin
Journal:
J. Amer. Math. Soc. 34 (2021), 261-313
MSC (2020):
Primary 14F42, 14F45; Secondary 55Q10, 55P47
DOI:
https://doi.org/10.1090/jams/958
Published electronically:
December 3, 2020
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A new approach to stable motivic homotopy theory is given. It is based on Voevodsky's theory of framed correspondences. Using the theory, framed motives of algebraic varieties are introduced and studied in the paper. They are the major computational tool for constructing an explicit quasi-fibrant motivic replacement of the suspension -spectrum of any smooth scheme
. Moreover, it is shown that the bispectrum
![]() |
each term of which is a twisted framed motive of







- [1] A. Ananyevskiy, G. Garkusha, I. Panin, Cancellation theorem for framed motives of algebraic varieties, 1601.06642.
- [2] Benjamin A. Blander, Local projective model structures on simplicial presheaves, 𝐾-Theory 24 (2001), no. 3, 283–301. MR 1876801, https://doi.org/10.1023/A:1013302313123
- [3]
A. Druzhinin and I. Panin,
Surjectivity of the etale excision map for homotopy invariant framed presheaves,
1808.07765. - [4] Bjørn Ian Dundas, Oliver Röndigs, and Paul Arne Østvær, Enriched functors and stable homotopy theory, Doc. Math. 8 (2003), 409–488. MR 2029170
- [5] B. I. Dundas, M. Levine, P. A. Østvær, O. Röndigs, and V. Voevodsky, Motivic homotopy theory, Universitext, Springer-Verlag, Berlin, 2007. Lectures from the Summer School held in Nordfjordeid, August 2002. MR 2334212
- [6] Grigory Garkusha and Ivan Panin, 𝐾-motives of algebraic varieties, Homology Homotopy Appl. 14 (2012), no. 2, 211–264. MR 3007094, https://doi.org/10.4310/HHA.2012.v14.n2.a13
- [7] Grigory Garkusha and Ivan Panin, On the motivic spectral sequence, J. Inst. Math. Jussieu 17 (2018), no. 1, 137–170. MR 3742558, https://doi.org/10.1017/S1474748015000419
- [8]
G. Garkusha and I. Panin,
Homotopy invariant presheaves with framed transfers,
Cambridge J. Math. 8 (2020), no. 1, 1-94. - [9]
G. Garkusha, A. Neshitov, and I. Panin,
Framed motives of relative motivic spheres,
1604.02732. - [10] Daniel R. Grayson, Weight filtrations via commuting automorphisms, 𝐾-Theory 9 (1995), no. 2, 139–172. MR 1340843, https://doi.org/10.1007/BF00961457
- [11] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- [12] Mark Hovey, Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra 165 (2001), no. 1, 63–127. MR 1860878, https://doi.org/10.1016/S0022-4049(00)00172-9
- [13] Daniel C. Isaksen, Flasque model structures for simplicial presheaves, 𝐾-Theory 36 (2005), no. 3-4, 371–395 (2006). MR 2275013, https://doi.org/10.1007/s10977-006-7113-z
- [14] J. F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), no. 1, 35–87. MR 906403, https://doi.org/10.1016/0022-4049(87)90100-9
- [15] J. F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000), 445–552. MR 1787949
- [16] Marc Levine, A comparison of motivic and classical stable homotopy theories, J. Topol. 7 (2014), no. 2, 327–362. MR 3217623, https://doi.org/10.1112/jtopol/jtt031
- [17] Fabien Morel, 𝔸¹-algebraic topology over a field, Lecture Notes in Mathematics, vol. 2052, Springer, Heidelberg, 2012. MR 2934577
- [18] Fabien Morel and Vladimir Voevodsky, 𝐴¹-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR 1813224
- [19] Alexander Neshitov, Framed correspondences and the Milnor-Witt 𝐾-theory, J. Inst. Math. Jussieu 17 (2018), no. 4, 823–852. MR 3835524, https://doi.org/10.1017/S1474748016000190
- [20] Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312. MR 353298, https://doi.org/10.1016/0040-9383(74)90022-6
- [21] Andrei Suslin and Vladimir Voevodsky, Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996), no. 1, 61–94. MR 1376246, https://doi.org/10.1007/BF01232367
- [22] Andrei Suslin and Vladimir Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117–189. MR 1744945
- [23] Vladimir Voevodsky, 𝐀¹-homotopy theory, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), 1998, pp. 579–604. MR 1648048
- [24]
V. Voevodsky,
Notes on framed correspondences,
unpublished, 2001. Also available at https://www.math.ias.edu/vladimir/publications - [25] Vladimir Voevodsky, Simplicial radditive functors, J. K-Theory 5 (2010), no. 2, 201–244. MR 2640203, https://doi.org/10.1017/is010003026jkt097
Retrieve articles in Journal of the American Mathematical Society with MSC (2020): 14F42, 14F45, 55Q10, 55P47
Retrieve articles in all journals with MSC (2020): 14F42, 14F45, 55Q10, 55P47
Additional Information
Grigory Garkusha
Affiliation:
Department of Mathematics, Swansea University, Fabian Way, Swansea SA1 8EN, United Kingdom
Email:
g.garkusha@swansea.ac.uk
Ivan Panin
Affiliation:
St. Petersburg Branch of V. A. Steklov Mathematical Institute, Fontanka 27, 191023 St. Petersburg, Russia
Email:
paniniv@gmail.com
DOI:
https://doi.org/10.1090/jams/958
Keywords:
Motivic homotopy theory,
framed correspondences,
motivic infinite loop spaces
Received by editor(s):
March 11, 2018
Received by editor(s) in revised form:
January 15, 2020, January 23, 2020, April 21, 2020, and April 22, 2020
Published electronically:
December 3, 2020
Dedicated:
In memory of Vladimir Voevodsky
Article copyright:
© Copyright 2020
American Mathematical Society