Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2024 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Characteristic cycles and the conductor of direct image
HTML articles powered by AMS MathViewer

by Takeshi Saito;
J. Amer. Math. Soc. 34 (2021), 369-410
DOI: https://doi.org/10.1090/jams/959
Published electronically: December 2, 2020

Abstract:

We prove the functoriality for a proper push-forward of the characteristic cycles of constructible complexes by morphisms of smooth projective schemes over a perfect field, under the assumption that the direct image of the singular support has the dimension at most that of the target of the morphism. The functoriality is deduced from a conductor formula which is a special case for morphisms to curves. The conductor formula in the constant coefficient case gives the geometric case of a formula conjectured by Bloch.
References
  • M. Artin, Théorème de finitude pour un morphisme propre; dimension cohomologique des schémas algébriques affines, SGA 4 Exposé XIV, Théorie des Topos et Cohomologie Étale des Schémas, Lecture Notes in Mathematics Volume 305, 1973, pp 145–167.
  • A. Beilinson, Constructible sheaves are holonomic, Selecta Math. (N.S.) 22 (2016), no. 4, 1797–1819. MR 3573946, DOI 10.1007/s00029-016-0260-z
  • A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
  • Spencer Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 421–450. MR 927991, DOI 10.1090/pspum/046.2/927991
  • A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020, DOI 10.1007/BF02698644
  • P. Deligne, Cohomologie à supports propres, SGA 4 Exposé XVII, Théorie des Topos et Cohomologie Étale des Schémas, Lecture Notes in Mathematics Volume 305 (1972), 250–480.
  • P. Deligne, Théorèmes de finitude en cohomologie $\ell$-adique, Cohomologie étale, Lecture Notes in Math., vol. 569, Springer, Berlin, 1977, pp. 233–261 (French). MR 3727439
  • William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
  • Alexander Grothendieck, Eléments réguliers des groupes algébriques et des algèbres de Lie, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1963/64) Inst. Hautes Études Sci., Paris, 1964, pp. Fasc. 4, Exposé 13, 47 (French). MR 219538
  • Haoyu Hu and Enlin Yang, Relative singular support and the semi-continuity of characteristic cycles for étale sheaves, Selecta Math. (N.S.) 24 (2018), no. 3, 2235–2273. MR 3816504, DOI 10.1007/s00029-017-0355-1
  • L. Illusie, Appendice à Théorèmes de finitude en cohomologie $\ell$-adique, Cohomologie étale SGA 4$\frac 12$, Springer Lecture Notes in Math. 569 (1977) 252–261.
  • Luc Illusie, Autour du théorème de monodromie locale, Astérisque 223 (1994), 9–57 (French). Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293970
  • Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
  • Kazuya Kato and Takeshi Saito, On the conductor formula of Bloch, Publ. Math. Inst. Hautes Études Sci. 100 (2004), 5–151. MR 2102698, DOI 10.1007/s10240-004-0026-6
  • Nicholas M. Katz and Gérard Laumon, Transformation de Fourier et majoration de sommes exponentielles, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 361–418 (French). MR 823177
  • Fabrice Orgogozo, Modifications et cycles proches sur une base générale, Int. Math. Res. Not. , posted on (2006), Art. ID 25315, 38 (French). MR 2249998, DOI 10.1155/IMRN/2006/25315
  • Takeshi Saito, The characteristic cycle and the singular support of a constructible sheaf, Invent. Math. 207 (2017), no. 2, 597–695. MR 3595935, DOI 10.1007/s00222-016-0675-3
  • Takeshi Saito, On the proper push-forward of the characteristic cycle of a constructible sheaf, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 485–494. MR 3821182, DOI 10.1090/pspum/097.2/17
  • Michael Temkin, Stable modification of relative curves, J. Algebraic Geom. 19 (2010), no. 4, 603–677. MR 2669727, DOI 10.1090/S1056-3911-2010-00560-7
  • Bertrand Toën and Gabriele Vezzosi, The $\ell$-adic trace formula for dg-categories and Bloch’s conductor conjecture, Boll. Unione Mat. Ital. 12 (2019), no. 1-2, 3–17. MR 3936294, DOI 10.1007/s40574-018-0166-0
  • Naoya Umezaki, Enlin Yang, and Yigeng Zhao, Characteristic class and the $\varepsilon$-factor of an étale sheaf, Trans. Amer. Math. Soc. 373 (2020), no. 10, 6887–6927. MR 4155195, DOI 10.1090/tran/8187
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14F20
  • Retrieve articles in all journals with MSC (2010): 14F20
Bibliographic Information
  • Takeshi Saito
  • Affiliation: School of Mathematical Sciences, University of Tokyo, Tokyo 153-8914, Japan
  • MR Author ID: 236565
  • Email: t-saito@ms.u-tokyo.ac.jp
  • Received by editor(s): May 6, 2017
  • Received by editor(s) in revised form: May 14, 2019, October 21, 2019, and February 24, 2020
  • Published electronically: December 2, 2020
  • Additional Notes: The research was supported by JSPS Grants-in-Aid for Scientific Research (A) 26247002.
  • © Copyright 2020 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 34 (2021), 369-410
  • MSC (2010): Primary 14F20
  • DOI: https://doi.org/10.1090/jams/959
  • MathSciNet review: 4280863