Hypertranscendence and linear difference equations
HTML articles powered by AMS MathViewer
- by Boris Adamczewski, Thomas Dreyfus and Charlotte Hardouin;
- J. Amer. Math. Soc. 34 (2021), 475-503
- DOI: https://doi.org/10.1090/jams/960
- Published electronically: January 20, 2021
- HTML | PDF | Request permission
Abstract:
After Hölder proved his classical theorem about the Gamma function, there has been a whole bunch of results showing that solutions to linear difference equations tend to be hypertranscendental (i.e., they cannot be solution to an algebraic differential equation). In this paper, we obtain the first complete results for solutions to general linear difference equations associated with the shift operator $x\mapsto x+h$ ($h\in \mathbb {C}^*$), the $q$-difference operator $x\mapsto qx$ ($q\in \mathbb {C}^*$ not a root of unity), and the Mahler operator $x\mapsto x^p$ ($p\geq 2$ integer). The only restriction is that we constrain our solutions to be expressed as (possibly ramified) Laurent series in the variable $x$ with complex coefficients (or in the variable $1/x$ in some special case associated with the shift operator). Our proof is based on the parametrized difference Galois theory initiated by Hardouin and Singer. We also deduce from our main result a general statement about algebraic independence of values of Mahler functions and their derivatives at algebraic points.References
- Carlos E. Arreche, Thomas Dreyfus, and Julien Roques, On the differential transcendence of the elliptic hypergeometric functions, arXiv preprint arXiv:1809.05416, 2018, to appear in J. Éc. polytech. Math.
- Boris Adamczewski and Colin Faverjon, Méthode de Mahler: relations linéaires, transcendance et applications aux nombres automatiques, Proc. Lond. Math. Soc. (3) 115 (2017), no. 1, 55–90 (French, with English and French summaries). MR 3669933, DOI 10.1112/plms.12038
- Boris Adamczewski and Colin Faverjon, Mahler’s method in several variables II: applications to base change problems and finite automata, arXiv preprint arXiv:1809.04826, 2018.
- Boris Adamczewski and Colin Faverjon, Mahler’s method in several variables and finite automata, arXiv preprint arXiv:2012.08283, 2020.
- Yves André, Différentielles non commutatives et théorie de Galois différentielle ou aux différences, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 5, 685–739 (French, with English and French summaries). MR 1862024, DOI 10.1016/S0012-9593(01)01074-6
- Carlos E. Arreche and Michael F. Singer, Galois groups for integrable and projectively integrable linear difference equations, J. Algebra 480 (2017), 423–449. MR 3633315, DOI 10.1016/j.jalgebra.2017.02.032
- Jean-Paul Bézivin, Sur une classe d’équations fonctionnelles non linéaires, Funkcial. Ekvac. 37 (1994), no. 2, 263–271 (French). MR 1299865
- J.-P. Bézivin and F. Gramain, Solutions entières d’un système d’équations aux différences, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 3, 791–814 (French, with English and French summaries). MR 1242616, DOI 10.5802/aif.1356
- Mireille Bousquet-Mélou, Rational and algebraic series in combinatorial enumeration, International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 789–826. MR 2275707
- N. Bourbaki, Algebra. II. Chapters 4–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1990. Translated from the French by P. M. Cohn and J. Howie. MR 1080964
- P. J. Cassidy, Differential algebraic groups, Amer. J. Math. 94 (1972), 891–954. MR 360611, DOI 10.2307/2373764
- Phyllis Joan Cassidy, The classification of the semisimple differential algebraic groups and the linear semisimple differential algebraic Lie algebras, J. Algebra 121 (1989), no. 1, 169–238. MR 992323, DOI 10.1016/0021-8693(89)90092-6
- Zoé Chatzidakis and Ehud Hrushovski, Model theory of difference fields, Trans. Amer. Math. Soc. 351 (1999), no. 8, 2997–3071. MR 1652269, DOI 10.1090/S0002-9947-99-02498-8
- Zoé Chatzidakis, Charlotte Hardouin, and Michael F. Singer, On the definitions of difference Galois groups, Model theory with applications to algebra and analysis. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 349, Cambridge Univ. Press, Cambridge, 2008, pp. 73–109. MR 2441376, DOI 10.1017/CBO9780511735226.006
- Richard M. Cohn, Difference algebra, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1965. MR 205987
- Phyllis J. Cassidy and Michael F. Singer, Galois theory of parameterized differential equations and linear differential algebraic groups, Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys., vol. 9, Eur. Math. Soc., Zürich, 2007, pp. 113–155. MR 2322329
- Thomas Dreyfus, Charlotte Hardouin, and Julien Roques, Functional relations of solutions of $q$-difference equations, arXiv preprint arXiv:1603.06771, 2016, to appear in Math. Z.
- Thomas Dreyfus, Charlotte Hardouin, and Julien Roques, Hypertranscendence of solutions of Mahler equations, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 9, 2209–2238. MR 3836845, DOI 10.4171/JEMS/810
- Thomas Dreyfus, Charlotte Hardouin, Julien Roques, and Michael F. Singer, On the nature of the generating series of walks in the quarter plane, Invent. Math. 213 (2018), no. 1, 139–203. MR 3815564, DOI 10.1007/s00222-018-0787-z
- Lucia Di Vizio, Approche galoisienne de la transcendance différentielle, Transcendance et irrationalité, SMF Journ. Annu., vol. 2012, Soc. Math. France, Paris, 2012, pp. 1–20 (French). MR 3467284
- Charlotte Hardouin, Hypertranscendance des systèmes aux différences diagonaux, Compos. Math. 144 (2008), no. 3, 565–581 (French, with English and French summaries). MR 2422340, DOI 10.1112/S0010437X07003430
- Charlotte Hardouin, Galoisian approach to differential transcendence, Galois theories of linear difference equations: an introduction, Math. Surveys Monogr., vol. 211, Amer. Math. Soc., Providence, RI, 2016, pp. 43–102. MR 3497726, DOI 10.1090/surv/211/02
- Peter A. Hendriks, An algorithm for computing a standard form for second-order linear $q$-difference equations, J. Pure Appl. Algebra 117/118 (1997), 331–352. Algorithms for algebra (Eindhoven, 1996). MR 1457845, DOI 10.1016/S0022-4049(97)00017-0
- Peter A. Hendriks, An algorithm determining the difference Galois group of second order linear difference equations, J. Symbolic Comput. 26 (1998), no. 4, 445–461. MR 1646675, DOI 10.1006/jsco.1998.0223
- David Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), no. 10, 437–479. MR 1557926, DOI 10.1090/S0002-9904-1902-00923-3
- Otto Hölder, Über die Eigenschaft der Gammafunction keiner algebraischen Differentialgleichung zu genügen, Math. Ann., 28 (1887): 1–13.
- Charlotte Hardouin and Michael F. Singer, Differential Galois theory of linear difference equations, Math. Ann. 342 (2008), no. 2, 333–377. MR 2425146, DOI 10.1007/s00208-008-0238-z
- Peter A. Hendriks and Michael F. Singer, Solving difference equations in finite terms, J. Symbolic Comput. 27 (1999), no. 3, 239–259. MR 1673591, DOI 10.1006/jsco.1998.0251
- Katsuya Ishizaki, Hypertranscendency of meromorphic solutions of a linear functional equation, Aequationes Math. 56 (1998), no. 3, 271–283. MR 1639233, DOI 10.1007/s000100050062
- E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, Vol. 54, Academic Press, New York-London, 1973. MR 568864
- Maxim Kontsevich and Don Zagier, Periods, Mathematics unlimited—2001 and beyond, Springer, Berlin, 2001, pp. 771–808. MR 1852188
- Kurt Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), no. 1, 342–366 (German). MR 1512537, DOI 10.1007/BF01454845
- Kurt Mahler, Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen, Math. Z. 32 (1930), no. 1, 545–585 (German). MR 1545184, DOI 10.1007/BF01194652
- Kurt Mahler, Uber das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen, Math. Ann. 103 (1930), no. 1, 573–587 (German). MR 1512638, DOI 10.1007/BF01455711
- J. S. Milne, Algebraic groups, Cambridge Studies in Advanced Mathematics, vol. 170, Cambridge University Press, Cambridge, 2017. The theory of group schemes of finite type over a field. MR 3729270, DOI 10.1017/9781316711736
- Eliakim Hastings Moore, Concerning transcendentally transcendental functions, Math. Ann. 48 (1896), no. 1-2, 49–74. MR 1510923, DOI 10.1007/BF01446334
- Pierre Nguyen, Équations de Mahler et hypertranscendance, PhD thesis, Institut de Mathématiques de Jussieu, 2012.
- Keiji Nishioka, A note on differentially algebraic solutions of first order linear difference equations, Aequationes Math. 27 (1984), no. 1-2, 32–48. MR 758857, DOI 10.1007/BF02192657
- Kumiko Nishioka, New approach in Mahler’s method, J. Reine Angew. Math. 407 (1990), 202–219. MR 1048535, DOI 10.1515/crll.1990.407.202
- Alexey Ovchinnikov and Michael Wibmer, $\sigma$-Galois theory of linear difference equations, Int. Math. Res. Not. IMRN 12 (2015), 3962–4018. MR 3356746, DOI 10.1093/imrn/rnu060
- Patrice Philippon, Groupes de Galois et nombres automatiques, J. Lond. Math. Soc. (2) 92 (2015), no. 3, 596–614 (French, with English and French summaries). MR 3431652, DOI 10.1112/jlms/jdv056
- Jean-Pierre Ramis, About the growth of entire functions solutions of linear algebraic $q$-difference equations, Ann. Fac. Sci. Toulouse Math. (6) 1 (1992), no. 1, 53–94 (English, with English and French summaries). MR 1191729, DOI 10.5802/afst.739
- Bernard Randé, Équations fonctionnelles de Mahler et applications aux suites p-régulières, Thèse de l’Université Bordeaux 1, 1992.
- Julien Roques, On the algebraic relations between Mahler functions, Trans. Amer. Math. Soc. 370 (2018), no. 1, 321–355. MR 3717982, DOI 10.1090/tran/6945
- Lee A. Rubel, A survey of transcendentally transcendental functions, Amer. Math. Monthly 96 (1989), no. 9, 777–788. MR 1033345, DOI 10.2307/2324840
- Raphaël Salem, Algebraic numbers and Fourier analysis, D. C. Heath and Company, Boston, MA, 1963. MR 157941
- Reinhard Schäfke and Michael Singer, Consistent systems of linear differential and difference equations, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 9, 2751–2792. MR 3985611, DOI 10.4171/JEMS/891
- Michael F. Singer and Felix Ulmer, Galois groups of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), no. 1, 9–36. MR 1237348, DOI 10.1006/jsco.1993.1032
- Marius van der Put and Michael F. Singer, Galois theory of difference equations, Lecture Notes in Mathematics, vol. 1666, Springer-Verlag, Berlin, 1997. MR 1480919, DOI 10.1007/BFb0096118
- Michael Wibmer, Geometric Difference Galois Theory, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–Ruprecht-Karls-Universitaet Heidelberg (Germany). MR 3828665
- Michael Wibmer, Existence of $\partial$-parameterized Picard-Vessiot extensions over fields with algebraically closed constants, J. Algebra 361 (2012), 163–171. MR 2921616, DOI 10.1016/j.jalgebra.2012.03.035
Bibliographic Information
- Boris Adamczewski
- Affiliation: Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France
- MR Author ID: 704234
- Email: boris.adamczewski@math.cnrs.fr
- Thomas Dreyfus
- Affiliation: Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS, 7 rue René Descartes, 67084 Strasbourg, France
- MR Author ID: 1051219
- ORCID: 0000-0003-1459-8456
- Email: dreyfus@math.unistra.fr
- Charlotte Hardouin
- Affiliation: Institut de Mathématiques de Toulouse; UMR 5219, Université de Toulouse; CNRS, UPS, F-31062 Toulouse Cedex 9, France
- MR Author ID: 768953
- Email: hardouin@math.univ-toulouse.fr
- Received by editor(s): October 7, 2019
- Received by editor(s) in revised form: June 22, 2020
- Published electronically: January 20, 2021
- Additional Notes: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under the Grant Agreement No 648132, and from the ANR De rerum natura project (ANR-19-CE40-0018).
- © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 34 (2021), 475-503
- MSC (2020): Primary 39A06, 12H05
- DOI: https://doi.org/10.1090/jams/960
- MathSciNet review: 4280865