Lebesgue spectrum of countable multiplicity for conservative flows on the torus
HTML articles powered by AMS MathViewer
- by Bassam Fayad, Giovanni Forni and Adam Kanigowski
- J. Amer. Math. Soc. 34 (2021), 747-813
- DOI: https://doi.org/10.1090/jams/970
- Published electronically: March 25, 2021
- HTML | PDF | Request permission
Abstract:
We study the spectral measures of conservative mixing flows on the $2$-torus having one degenerate singularity. We show that, for a sufficiently strong singularity, the spectrum of these flows is typically Lebesgue with infinite multiplicity.
For this, we use two main ingredients: (1) a proof of absolute continuity of the maximal spectral type for this class of non-uniformly stretching flows that have an irregular decay of correlations, (2) a geometric criterion that yields infinite Lebesgue multiplicity of the spectrum and that is well adapted to rapidly mixing flows.
References
- V. I. Arnol′d, Topological and ergodic properties of closed $1$-forms with incommensurable periods, Funktsional. Anal. i Prilozhen. 25 (1991), no. 2, 1–12, 96 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 2, 81–90. MR 1142204, DOI 10.1007/BF01079587
- Artur Avila and Giovanni Forni, Weak mixing for interval exchange transformations and translation flows, Ann. of Math. (2) 165 (2007), no. 2, 637–664. MR 2299743, DOI 10.4007/annals.2007.165.637
- Artur Avila and Marcelo Viana, Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math. 198 (2007), no. 1, 1–56. MR 2316268, DOI 10.1007/s11511-007-0012-1
- Jon Chaika and Alex Wright, A smooth mixing flow on a surface with nondegenerate fixed points, J. Amer. Math. Soc. 32 (2019), no. 1, 81–117. MR 3868000, DOI 10.1090/jams/911
- I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433, DOI 10.1007/978-1-4615-6927-5
- Dmitry Dolgopyat and Bassam Fayad, Limit theorems for toral translations, Hyperbolic dynamics, fluctuations and large deviations, Proc. Sympos. Pure Math., vol. 89, Amer. Math. Soc., Providence, RI, 2015, pp. 227–277. MR 3309100, DOI 10.1090/pspum/089/01492
- Dmitry Dolgopyat and Yakov Pesin, Every compact manifold carries a completely hyperbolic diffeomorphism, Ergodic Theory Dynam. Systems 22 (2002), no. 2, 409–435. MR 1898798, DOI 10.1017/S0143385702000202
- Bassam R. Fayad, Analytic mixing reparametrizations of irrational flows, Ergodic Theory Dynam. Systems 22 (2002), no. 2, 437–468. MR 1898799, DOI 10.1017/S0143385702000214
- Bassam Fayad, Polynomial decay of correlations for a class of smooth flows on the two torus, Bull. Soc. Math. France 129 (2001), no. 4, 487–503 (English, with English and French summaries). MR 1894147, DOI 10.24033/bsmf.2405
- Bassam Fayad, Smooth mixing flows with purely singular spectra, Duke Math. J. 132 (2006), no. 2, 371–391. MR 2219261, DOI 10.1215/S0012-7094-06-13225-8
- Bassam Fayad, Anatole Katok, and Alistar Windsor, Mixed spectrum reparameterizations of linear flows on ${\Bbb T}^2$, Mosc. Math. J. 1 (2001), no. 4, 521–537, 644 (English, with English and Russian summaries). Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. MR 1901073, DOI 10.17323/1609-4514-2001-1-4-521-537
- Bassam Fayad and Adam Kanigowski, Multiple mixing for a class of conservative surface flows, Invent. Math. 203 (2016), no. 2, 555–614. MR 3455157, DOI 10.1007/s00222-015-0596-6
- Livio Flaminio and Giovanni Forni, Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows, Electron. Res. Announc. Math. Sci. 26 (2019), 16–23. MR 3959334, DOI 10.3934/era.2019.26.002
- Giovanni Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2) 155 (2002), no. 1, 1–103. MR 1888794, DOI 10.2307/3062150
- Giovanni Forni and Adam Kanigowski, Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows, J. Éc. polytech. Math. 7 (2020), 63–91 (English, with English and French summaries). MR 4033750, DOI 10.5802/jep.111
- Giovanni Forni and Corinna Ulcigrai, Time-changes of horocycle flows, J. Mod. Dyn. 6 (2012), no. 2, 251–273. MR 2968956, DOI 10.3934/jmd.2012.6.251
- Harry Furstenberg, The unique ergodicity of the horocycle flow, Recent advances in topological dynamics (Proc. Conf. Topological Dynamics, Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Math., Vol. 318, Springer, Berlin, 1973, pp. 95–115. MR 0393339
- I. M. Gel′fand and S. V. Fomin, Geodesic flows on manifolds of constant negative curvature, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 1(47), 118–137 (Russian). MR 0052701
- M. Guenais and F. Parreau, Eigenvalues of transformations arising from irrational rotations and step functions, 2006, preprint, arXiv:math/0605250.
- Bernard Host, Mixing of all orders and pairwise independent joinings of systems with singular spectrum, Israel J. Math. 76 (1991), no. 3, 289–298. MR 1177346, DOI 10.1007/BF02773866
- Huyi Hu, Yakov Pesin, and Anna Talitskaya, Every compact manifold carries a hyperbolic Bernoulli flow, Modern dynamical systems and applications, Cambridge Univ. Press, Cambridge, 2004, pp. 347–358. MR 2093309
- Adam Kanigowski, Joanna Kułaga-Przymus, and Corinna Ulcigrai, Multiple mixing and parabolic divergence in smooth area-preserving flows on higher genus surfaces, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 12, 3797–3855. MR 4022716, DOI 10.4171/JEMS/914
- Adam Kanigowski, Mariusz Lemańczyk, and Corinna Ulcigrai, On disjointness properties of some parabolic flows, Invent. Math. 221 (2020), no. 1, 1–111. MR 4105085, DOI 10.1007/s00222-019-00940-y
- A. B. Katok, Time change, monotone equivalence, and standard dynamical systems, Dokl. Akad. Nauk SSSR 223 (1975), no. 4, 789–792 (Russian). MR 0412383
- A. Katok, Bernoulli diffeomorphisms on surfaces, Ann. of Math. (2) 110 (1979), no. 3, 529–547. MR 554383, DOI 10.2307/1971237
- Anatole Katok and Jean-Paul Thouvenot, Spectral properties and combinatorial constructions in ergodic theory, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 649–743. MR 2186251, DOI 10.1016/S1874-575X(06)80036-6
- Ya. G. Sinaĭ and K. M. Khanin, Mixing of some classes of special flows over rotations of the circle, Funktsional. Anal. i Prilozhen. 26 (1992), no. 3, 1–21 (Russian); English transl., Funct. Anal. Appl. 26 (1992), no. 3, 155–169. MR 1189019, DOI 10.1007/BF01075628
- Dmitry Kleinbock, Nimish Shah, and Alexander Starkov, Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 813–930. MR 1928528, DOI 10.1016/S1874-575X(02)80013-3
- A. V. Kočergin, The absence of mixing in special flows over a rotation of the circle and in flows on a two-dimensional torus, Dokl. Akad. Nauk SSSR 205 (1972), 515–518 (Russian). MR 0306629
- A. V. Kočergin, Mixing in special flows over a rearrangement of segments and in smooth flows on surfaces, Mat. Sb. (N.S.) 96(138) (1975), 471–502, 504 (Russian). MR 0516507
- A. V. Kočergin, Nondegenerate saddles, and the absence of mixing, Mat. Zametki 19 (1976), no. 3, 453–468 (Russian). MR 415681
- A. V. Kochergin, Nondegenerate fixed points and mixing in flows on a two-dimensional torus, Mat. Sb. 194 (2003), no. 8, 83–112 (Russian, with Russian summary); English transl., Sb. Math. 194 (2003), no. 7-8, 1195–1224. MR 2034533, DOI 10.1070/SM2003v194n08ABEH000762
- A. V. Kochergin, Nondegenerate saddles and the absence of mixing in flows on surfaces, Tr. Mat. Inst. Steklova 256 (2007), no. Din. Sist. i Optim., 252–266 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 256 (2007), no. 1, 238–252. MR 2336903, DOI 10.1134/S0081543807010130
- Andrey Kochergin, Causes of stretching of Birkhoff sums and mixing in flows on surfaces, Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., vol. 54, Cambridge Univ. Press, Cambridge, 2007, pp. 129–144. MR 2369445, DOI 10.1017/CBO9780511755187.006
- A. N. Kolmogorov, On dynamical systems with an integral invariant on the torus, Doklady Akad. Nauk SSSR (N.S.) 93 (1953), 763–766 (Russian). MR 0062892
- A. N. Kolmogorov, Théorie générale des systèmes dynamiques et mécanique classique, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, Vol. 1, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1957, pp. 315–333 (French). MR 0097598
- A. N. Kolmogorov, A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces, Trudy Mat. Inst. Steklov. 169 (1985), 94–98, 254 (Russian). Topology, ordinary differential equations, dynamical systems. MR 836570
- Denis V. Kosygin and Yakov G. Sinai, From Kolmogorov’s work on entropy of dynamical systems to non-uniformly hyperbolic dynamics, Kolmogorov’s heritage in mathematics, Springer, Berlin, 2007, pp. 239–252. MR 2376787, DOI 10.1007/978-3-540-36351-4_{1}2
- M. Kontsevich, Lyapunov exponents and Hodge theory, The mathematical beauty of physics (Saclay, 1996) Adv. Ser. Math. Phys., vol. 24, World Sci. Publ., River Edge, NJ, 1997, pp. 318–332. MR 1490861
- Mariusz Lemańczyk, Spectral theory of dynamical systems, Mathematics of complexity and dynamical systems. Vols. 1–3, Springer, New York, 2012, pp. 1618–1638. MR 3220776, DOI 10.1007/978-1-4614-1806-1_{1}04
- M. Lemańczyk, Sur l’absence de mélange pour des flots spéciaux au-dessus d’une rotation irrationnelle. part 1, Colloq. Math. 84/85 (2000), no. part 1, 29–41 (French, with English summary). Dedicated to the memory of Anzelm Iwanik. MR 1778837, DOI 10.4064/cm-84/85-1-29-41
- Brian Marcus, Unique ergodicity of the horocycle flow: variable negative curvature case, Israel J. Math. 21 (1975), no. 2-3, 133–144. MR 407902, DOI 10.1007/BF02760791
- Brian Marcus, Ergodic properties of horocycle flows for surfaces of negative curvature, Ann. of Math. (2) 105 (1977), no. 1, 81–105. MR 458496, DOI 10.2307/1971026
- S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory, Uspekhi Mat. Nauk 37 (1982), no. 5(227), 3–49, 248 (Russian). MR 676612
- S. P. Novikov, The semiclassical electron in a magnetic field and lattice. Some problems of low-dimensional “periodic” topology, Geom. Funct. Anal. 5 (1995), no. 2, 434–444. MR 1334874, DOI 10.1007/BF01895674
- O. S. Parasyuk, Flows of horocycles on surfaces of constant negative curvature, Uspehi Matem. Nauk (N.S.) 8 (1953), no. 3(55), 125–126 (Russian). MR 0058883
- Ya. B. Pesin, Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties, Ergodic Theory Dynam. Systems 12 (1992), no. 1, 123–151. MR 1162404, DOI 10.1017/S0143385700006635
- Marina Ratner, Horocycle flows, joinings and rigidity of products, Ann. of Math. (2) 118 (1983), no. 2, 277–313. MR 717825, DOI 10.2307/2007030
- Marina Ratner, Rigidity of horocycle flows, Ann. of Math. (2) 115 (1982), no. 3, 597–614. MR 657240, DOI 10.2307/2007014
- Marina Ratner, Horocycle flows are loosely Bernoulli, Israel J. Math. 31 (1978), no. 2, 122–132. MR 516248, DOI 10.1007/BF02760543
- Davide Ravotti, Quantitative mixing for locally Hamiltonian flows with saddle loops on compact surfaces, Ann. Henri Poincaré 18 (2017), no. 12, 3815–3861. MR 3723342, DOI 10.1007/s00023-017-0619-5
- Dmitri Scheglov, Absence of mixing for smooth flows on genus two surfaces, J. Mod. Dyn. 3 (2009), no. 1, 13–34. MR 2481330, DOI 10.3934/jmd.2009.3.13
- M. D. Šklover, Classical dynamical systems on the torus with continuous spectrum, Izv. Vysš. Učebn. Zaved. Matematika 1967 (1967), no. 10 (65), 113–124 (Russian). MR 0226147
- Lucia D. Simonelli, Absolutely continuous spectrum for parabolic flows/maps, Discrete Contin. Dyn. Syst. 38 (2018), no. 1, 263–292. MR 3708161, DOI 10.3934/dcds.2018013
- Ja. G. Sinaĭ, Dynamical systems with countable Lebesgue spectrum. I, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 899–924 (Russian). MR 0148852
- Andrei N. Kolmogorov, Selected works. III. Information theory and the theory of algorithms, Springer Collected Works in Mathematics, Springer, Dordrecht, 2019. Translated from the Russian by A. B. Sossinsky; Edited by Albert N. Shiryaev; Reprint of the 1993 edition [ MR1228446]. MR 3822138
- Rafael Tiedra De Aldecoa, Spectral analysis of time changes of horocycle flows, J. Mod. Dyn. 6 (2012), no. 2, 275–285. MR 2968957, DOI 10.3934/jmd.2012.6.275
- R. Tiedra de Aldecoa, Commutator methods for the spectral analysis of uniquely ergodic dynamical systems, Ergodic Theory Dynam. Systems 35 (2015), no. 3, 944–967. MR 3334911, DOI 10.1017/etds.2013.76
- Corinna Ulcigrai, Mixing of asymmetric logarithmic suspension flows over interval exchange transformations, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 991–1035. MR 2322189, DOI 10.1017/S0143385706000836
- Corinna Ulcigrai, Weak mixing for logarithmic flows over interval exchange transformations, J. Mod. Dyn. 3 (2009), no. 1, 35–49. MR 2481331, DOI 10.3934/jmd.2009.3.35
- Corinna Ulcigrai, Absence of mixing in area-preserving flows on surfaces, Ann. of Math. (2) 173 (2011), no. 3, 1743–1778. MR 2800723, DOI 10.4007/annals.2011.173.3.10
- Anton Zorich, Asymptotic flag of an orientable measured foliation on a surface, Geometric study of foliations (Tokyo, 1993) World Sci. Publ., River Edge, NJ, 1994, pp. 479–498. MR 1363744
- Anton Zorich, Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 2, 325–370 (English, with English and French summaries). MR 1393518, DOI 10.5802/aif.1517
- Anton Zorich, Deviation for interval exchange transformations, Ergodic Theory Dynam. Systems 17 (1997), no. 6, 1477–1499. MR 1488330, DOI 10.1017/S0143385797086215
Bibliographic Information
- Bassam Fayad
- Affiliation: CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche, France
- MR Author ID: 675142
- Giovanni Forni
- Affiliation: Department of Mathematics, University of Maryland, College Park, College Park, MD 20742
- MR Author ID: 308447
- Adam Kanigowski
- Affiliation: Department of Mathematics, University of Maryland, College Park, College Park, MD 20742
- MR Author ID: 995679
- Received by editor(s): May 29, 2019
- Received by editor(s) in revised form: April 7, 2020, August 19, 2020, and November 2, 2020
- Published electronically: March 25, 2021
- Additional Notes: The first author was supported by ANR-15-CE40-0001 and by the project BRNUH. The second author was supported by NSF Grants DMS 1201534 and 1600687, and by a Simons Fellowship.
- © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 34 (2021), 747-813
- MSC (2020): Primary 37A25, 37A30, 37E35; Secondary 37C10, 37D40
- DOI: https://doi.org/10.1090/jams/970
- MathSciNet review: 4334191