On the constant scalar curvature Kähler metrics (II)—Existence results
HTML articles powered by AMS MathViewer
- by Xiuxiong Chen and Jingrui Cheng;
- J. Amer. Math. Soc. 34 (2021), 937-1009
- DOI: https://doi.org/10.1090/jams/966
- Published electronically: June 7, 2021
- HTML | PDF | Request permission
Abstract:
In this paper, we apply our previous estimates in Chen and Cheng [On the constant scalar curvature Kähler metrics (I): a priori estimates, Preprint] to study the existence of cscK metrics on compact Kähler manifolds. First we prove that the properness of $K$-energy in terms of $L^1$ geodesic distance $d_1$ in the space of Kähler potentials implies the existence of cscK metrics. We also show that the weak minimizers of the $K$-energy in $(\mathcal {E}^1, d_1)$ are smooth cscK potentials. Finally we show that the non-existence of cscK metric implies the existence of a destabilized $L^1$ geodesic ray where the $K$-energy is non-increasing, which is a weak version of a conjecture by Donaldson. The continuity path proposed by Xiuxiong Chen [Ann. Math. Qué. 42 (2018), pp. 69–189] is instrumental in the above proofs.References
- Miguel Abreu, Kähler geometry of toric varieties and extremal metrics, Internat. J. Math. 9 (1998), no. 6, 641–651. MR 1644291, DOI 10.1142/S0129167X98000282
- Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon, and Christina W. Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry. III. Extremal metrics and stability, Invent. Math. 173 (2008), no. 3, 547–601. MR 2425136, DOI 10.1007/s00222-008-0126-x
- Richard H. Bamler and Qi S. Zhang, Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature, Adv. Math. 319 (2017), 396–450. MR 3695879, DOI 10.1016/j.aim.2017.08.025
- Robert J. Berman and Bo Berndtsson, Convexity of the $K$-energy on the space of Kähler metrics and uniqueness of extremal metrics, J. Amer. Math. Soc. 30 (2017), no. 4, 1165–1196. MR 3671939, DOI 10.1090/jams/880
- R. J. Berman, S. Boucksom, and M. Jonsson, A variational approach to the Yau-Tian-Donaldson conjecture, arXiv:1509.04561v2 (2018) \iffalse J. European. Math. soc, vol 21, issue 9(2019), 2905-2944.
- Robert J. Berman, Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math. 751 (2019), 27–89. MR 3956691, DOI 10.1515/crelle-2016-0033
- Robert J. Berman, Tamás Darvas, and Chinh H. Lu, Regularity of weak minimizers of the $K$-energy and applications to properness and $K$-stability, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 2, 267–289 (English, with English and French summaries). MR 4094559, DOI 10.24033/asens.2422
- Robert J. Berman, Tamás Darvas, and Chinh H. Lu, Convexity of the extended K-energy and the large time behavior of the weak Calabi flow, Geom. Topol. 21 (2017), no. 5, 2945–2988. MR 3687111, DOI 10.2140/gt.2017.21.2945
- Zbigniew Błocki, Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), no. 6, 1697–1701. MR 2021054, DOI 10.1512/iumj.2003.52.2346
- Zbigniew Błocki and Sławomir Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089–2093. MR 2299485, DOI 10.1090/S0002-9939-07-08858-2
- Sébastien Boucksom, Tomoyuki Hisamoto, and Mattias Jonsson, Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 9, 2905–2944. MR 3985614, DOI 10.4171/JEMS/894
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., No. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 259–290. MR 645743
- Eugenio Calabi, Extremal Kähler metrics. II, Differential geometry and complex analysis, Springer, Berlin, 1985, pp. 95–114. MR 780039
- E. Calabi and X. X. Chen, The space of Kähler metrics. II, J. Differential Geom. 61 (2002), no. 2, 173–193. MR 1969662, DOI 10.4310/jdg/1090351383
- Bohui Chen, An-Min Li, and Li Sheng, Extremal metrics on toric surfaces, Adv. Math. 340 (2018), 363–405. MR 3886172, DOI 10.1016/j.aim.2018.10.015
- Bohui Chen, An-Min Li, and Li Sheng, Uniform K-stability for extremal metrics on toric varieties, J. Differential Equations 257 (2014), no. 5, 1487–1500. MR 3217046, DOI 10.1016/j.jde.2014.05.009
- Bohui Chen, Qing Han, An-Min Li, and Li Sheng, Interior estimates for the $n$-dimensional Abreu’s equation, Adv. Math. 251 (2014), 35–46. MR 3130333, DOI 10.1016/j.aim.2013.10.004
- Xiuxiong Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189–234. MR 1863016
- Xiuxiong Chen, On the lower bound of the Mabuchi energy and its application, Internat. Math. Res. Notices 12 (2000), 607–623. MR 1772078, DOI 10.1155/S1073792800000337
- Xiuxiong Chen, Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance, Invent. Math. 175 (2009), no. 3, 453–503. MR 2471594, DOI 10.1007/s00222-008-0153-7
- Xiuxiong Chen, On the existence of constant scalar curvature Kähler metric: a new perspective, Ann. Math. Qué. 42 (2018), no. 2, 169–189 (English, with English and French summaries). MR 3858468, DOI 10.1007/s40316-017-0086-x
- X.-X. Chen and J. Cheng, On the constant scalar curvature Kähler metrics (I): a priori estimates, arXiv:1712.06697, 2017.
- Xiuxiong Chen, Tamás Darvas, and Weiyong He, Compactness of Kähler metrics with bounds on Ricci curvature and $\mathcal I$ functional, Calc. Var. Partial Differential Equations 58 (2019), no. 4, Paper No. 139, 9. MR 3984099, DOI 10.1007/s00526-019-1572-6
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), no. 1, 183–197. MR 3264766, DOI 10.1090/S0894-0347-2014-00799-2
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than $2\pi$, J. Amer. Math. Soc. 28 (2015), no. 1, 199–234. MR 3264767, DOI 10.1090/S0894-0347-2014-00800-6
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches $2\pi$ and completion of the main proof, J. Amer. Math. Soc. 28 (2015), no. 1, 235–278. MR 3264768, DOI 10.1090/S0894-0347-2014-00801-8
- X. X. Chen and W. Y. He, On the Calabi flow, Amer. J. Math. 130 (2008), no. 2, 539–570. MR 2405167, DOI 10.1353/ajm.2008.0018
- Xiuxiong Chen and Weiyong He, The complex Monge-Ampère equation on compact Kähler manifolds, Math. Ann. 354 (2012), no. 4, 1583–1600. MR 2993005, DOI 10.1007/s00208-012-0780-6
- XiuXiong Chen, Long Li, and Mihai Păuni, Approximation of weak geodesics and subharmonicity of Mabuchi energy, Ann. Fac. Sci. Toulouse Math. (6) 25 (2016), no. 5, 935–957 (English, with English and French summaries). MR 3582114, DOI 10.5802/afst.1516
- X. X. Chen, M. Paun, and Yu Zeng, On deformation of extremal metrics, arXiv:1506.01290, 2015.
- X. X. Chen and G. Tian, Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 1–107. MR 2434691, DOI 10.1007/s10240-008-0013-4
- Bing Wang, On the conditions to extend Ricci flow, Int. Math. Res. Not. IMRN 8 (2008), Art. ID rnn012, 30. MR 2428146, DOI 10.1093/imrn/rnn012
- Xiuxiong Chen and Bing Wang, On the conditions to extend Ricci flow(III), Int. Math. Res. Not. IMRN 10 (2013), 2349–2367. MR 3061942, DOI 10.1093/imrn/rns117
- Xiuxiong Chen and Yuanqi Wang, $C^{2,\alpha }$-estimate for Monge-Ampère equations with Hölder-continuous right hand side, Ann. Global Anal. Geom. 49 (2016), no. 2, 195–204. MR 3464220, DOI 10.1007/s10455-015-9487-8
- Xiuxiong Chen and Song Sun, Space of Kähler metrics (V)—Kähler quantization, Metric and differential geometry, Progr. Math., vol. 297, Birkhäuser/Springer, Basel, 2012, pp. 19–41. MR 3220438, DOI 10.1007/978-3-0348-0257-4_{2}
- Tristan C. Collins and Gábor Székelyhidi, Convergence of the $J$-flow on toric manifolds, J. Differential Geom. 107 (2017), no. 1, 47–81. MR 3698234, DOI 10.4310/jdg/1505268029
- Tamás Darvas, The Mabuchi completion of the space of Kähler potentials, Amer. J. Math. 139 (2017), no. 5, 1275–1313. MR 3702499, DOI 10.1353/ajm.2017.0032
- Tamás Darvas, The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015), 182–219. MR 3406499, DOI 10.1016/j.aim.2015.08.005
- Tamás Darvas and Weiyong He, Geodesic rays and Kähler-Ricci trajectories on Fano manifolds, Trans. Amer. Math. Soc. 369 (2017), no. 7, 5069–5085. MR 3632560, DOI 10.1090/tran/6878
- Tamás Darvas and Yanir A. Rubinstein, Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc. 30 (2017), no. 2, 347–387. MR 3600039, DOI 10.1090/jams/873
- Jean-Pierre Demailly, Variational approach for complex Monge-Ampère equations and geometric applications, Astérisque 390 (2017), Exp. No. 1112, 245–275. Séminaire Bourbaki. Vol. 2015/2016. Exposés 1104–1119. MR 3666028
- Ruadhaí Dervan, Alpha invariants and coercivity of the Mabuchi functional on Fano manifolds, Ann. Fac. Sci. Toulouse Math. (6) 25 (2016), no. 4, 919–934 (English, with English and French summaries). MR 3564131, DOI 10.5802/afst.1515
- Ruadhaí Dervan, Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not. IMRN 15 (2016), 4728–4783. MR 3564626, DOI 10.1093/imrn/rnv291
- Ruadhaí Dervan, Relative K-stability for Kähler manifolds, Math. Ann. 372 (2018), no. 3-4, 859–889. MR 3880285, DOI 10.1007/s00208-017-1592-5
- R. Dervan and J. Ross, $K$-stability for Kähler manifolds, arXiv: 1602. 08983.
- S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13–33. MR 1736211, DOI 10.1090/trans2/196/02
- S. K. Donaldson, Moment maps and diffeomorphisms, Asian J. Math. 3 (1999), no. 1, 1–15. Sir Michael Atiyah: a great mathematician of the twentieth century. MR 1701920, DOI 10.4310/AJM.1999.v3.n1.a1
- S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. MR 1988506, DOI 10.4310/jdg/1090950195
- S. K. Donaldson, Extremal metrics on toric surfaces: a continuity method, J. Differential Geom. 79 (2008), no. 3, 389–432. MR 2433928, DOI 10.4310/jdg/1213798183
- Simon K. Donaldson, Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal. 19 (2009), no. 1, 83–136. MR 2507220, DOI 10.1007/s00039-009-0714-y
- Daniel Guan, On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles, Math. Res. Lett. 6 (1999), no. 5-6, 547–555. MR 1739213, DOI 10.4310/MRL.1999.v6.n5.a7
- Hao Fang, Mijia Lai, Jian Song, and Ben Weinkove, The $J$-flow on Kähler surfaces: a boundary case, Anal. PDE 7 (2014), no. 1, 215–226. MR 3219504, DOI 10.2140/apde.2014.7.215
- V. Guedj, The metric completion of the Riemannian space of Kähler metrics, arXiv:1401.7857, 2014.
- Vincent Guedj and Ahmed Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), no. 2, 442–482. MR 2352488, DOI 10.1016/j.jfa.2007.04.018
- Victor Guillemin, Kaehler structures on toric varieties, J. Differential Geom. 40 (1994), no. 2, 285–309. MR 1293656
- Yoshinori Hashimoto, Existence of twisted constant scalar curvature Kähler metrics with a large twist, Math. Z. 292 (2019), no. 3-4, 791–803. MR 3980270, DOI 10.1007/s00209-018-2133-y
- Weiyong He and Yu Zeng, Constant scalar curvature equation and regularity of its weak solution, Comm. Pure Appl. Math. 72 (2019), no. 2, 422–448. MR 3896025, DOI 10.1002/cpa.21790
- T. Hisamoto, Stability and coercivity for toric polarizations, arXiv:1610.07998v1, 2016.
- Sławomir Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1, 69–117. MR 1618325, DOI 10.1007/BF02392879
- Marc Levine, A remark on extremal Kähler metrics, J. Differential Geom. 21 (1985), no. 1, 73–77. MR 806703
- Haozhao Li, Yalong Shi, and Yi Yao, A criterion for the properness of the $K$-energy in a general Kähler class, Math. Ann. 361 (2015), no. 1-2, 135–156. MR 3302615, DOI 10.1007/s00208-014-1073-z
- Toshiki Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), no. 2, 227–252. MR 909015
- J. Ross, Unstable products of smooth curves, Invent. Math. 165 (2006), no. 1, 153–162. MR 2221139, DOI 10.1007/s00222-005-0490-8
- Julius Ross and David Witt Nyström, Analytic test configurations and geodesic rays, J. Symplectic Geom. 12 (2014), no. 1, 125–169. MR 3194078, DOI 10.4310/JSG.2014.v12.n1.a5
- Stephen Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), no. 3, 495–550. MR 1165352, DOI 10.2307/2374768
- Jacopo Stoppa, K-stability of constant scalar curvature Kähler manifolds, Adv. Math. 221 (2009), no. 4, 1397–1408. MR 2518643, DOI 10.1016/j.aim.2009.02.013
- Jacopo Stoppa, Twisted constant scalar curvature Kähler metrics and Kähler slope stability, J. Differential Geom. 83 (2009), no. 3, 663–691. MR 2581360
- Gábor Székelyhidi, Filtrations and test-configurations, Math. Ann. 362 (2015), no. 1-2, 451–484. With an appendix by Sebastien Boucksom. MR 3343885, DOI 10.1007/s00208-014-1126-3
- Chi Li, Greatest lower bounds on Ricci curvature for toric Fano manifolds, Adv. Math. 226 (2011), no. 6, 4921–4932. MR 2775890, DOI 10.1016/j.aim.2010.12.023
- Gang Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_1(M)>0$, Invent. Math. 89 (1987), no. 2, 225–246. MR 894378, DOI 10.1007/BF01389077
- Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), no. 1, 99–130. MR 1064867
- Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, DOI 10.1007/s002220050176
- Jian Song and Ben Weinkove, On the convergence and singularities of the $J$-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math. 61 (2008), no. 2, 210–229. MR 2368374, DOI 10.1002/cpa.20182
- Jian Song and Ben Weinkove, The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type, Univ. Iagel. Acta Math. 50, [2012 on articles] (2013), 89–106. MR 3235005
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
- Yu Zeng, Deformations from a given Kähler metric to a twisted CSCK metric, Asian J. Math. 23 (2019), no. 6, 985–1000. MR 4136486
- Bin Zhou and Xiaohua Zhu, Relative $K$-stability and modified $K$-energy on toric manifolds, Adv. Math. 219 (2008), no. 4, 1327–1362. MR 2450612, DOI 10.1016/j.aim.2008.06.016
Bibliographic Information
- Xiuxiong Chen
- Affiliation: Institute of Geometry and Physics, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China AND Department of Mathematics, Stony Brook University, Stony Brook, NY, 11794-3651, USA
- MR Author ID: 632654
- Email: xiu@math.sunysb.edu
- Jingrui Cheng
- Affiliation: Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, WI, 53706, USA AND Department of Mathematics, Stony Brook University, Stony Brook, NY, 11794-3651, USA
- MR Author ID: 1185151
- Email: jingrui.cheng@stonybrook.edu
- Received by editor(s): February 17, 2018
- Received by editor(s) in revised form: February 24, 2020, and September 24, 2020
- Published electronically: June 7, 2021
- Additional Notes: The first author was partially supported by NSF grant DMS-1515795 and Simons Foundation grant 605796
- © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 34 (2021), 937-1009
- MSC (2020): Primary 53C55, 53C21; Secondary 35J30, 35J60, 35J96
- DOI: https://doi.org/10.1090/jams/966
- MathSciNet review: 4301558