On the constant scalar curvature Kähler metrics (I)—A priori estimates
HTML articles powered by AMS MathViewer
- by Xiuxiong Chen and Jingrui Cheng;
- J. Amer. Math. Soc. 34 (2021), 909-936
- DOI: https://doi.org/10.1090/jams/967
- Published electronically: June 7, 2021
- HTML | PDF | Request permission
Abstract:
In this paper, we derive apriori estimates for constant scalar curvature Kähler metrics on a compact Kähler manifold. We show that higher order derivatives can be estimated in terms of a $C^0$ bound for the Kähler potential.References
- Thierry Aubin, Équations du type Monge-Ampère sur les variétés kähleriennes compactes, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, Aiii, A119–A121. MR 433520
- Richard H. Bamler and Qi S. Zhang, Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature, Adv. Math. 319 (2017), 396–450. MR 3695879, DOI 10.1016/j.aim.2017.08.025
- Robert J. Berman and Bo Berndtsson, Convexity of the $K$-energy on the space of Kähler metrics and uniqueness of extremal metrics, J. Amer. Math. Soc. 30 (2017), no. 4, 1165–1196. MR 3671939, DOI 10.1090/jams/880
- Robert J. Berman, Tamás Darvas, and Chinh H. Lu, Convexity of the extended K-energy and the large time behavior of the weak Calabi flow, Geom. Topol. 21 (2017), no. 5, 2945–2988. MR 3687111, DOI 10.2140/gt.2017.21.2945
- Zbigniew Błocki, On uniform estimate in Calabi-Yau theorem, Sci. China Ser. A 48 (2005), no. suppl., 244–247. MR 2156505, DOI 10.1007/BF02884710
- Zbigniew Błocki, On the uniform estimate in the Calabi-Yau theorem, II, Sci. China Math. 54 (2011), no. 7, 1375–1377. MR 2817572, DOI 10.1007/s11425-011-4197-6
- Eugenio Calabi, On Kähler manifolds with vanishing canonical class, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton Univ. Press, Princeton, NJ, 1957, pp. 78–89. MR 85583
- Eugenio Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958), 105–126. MR 106487
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., No. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 259–290. MR 645743
- Eugenio Calabi, Extremal Kähler metrics. II, Differential geometry and complex analysis, Springer, Berlin, 1985, pp. 95–114. MR 780039
- Xiuxiong Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189–234. MR 1863016
- Xiuxiong Chen, On the lower bound of the Mabuchi energy and its application, Internat. Math. Res. Notices 12 (2000), 607–623. MR 1772078, DOI 10.1155/S1073792800000337
- Xiuxiong Chen, Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance, Invent. Math. 175 (2009), no. 3, 453–503. MR 2471594, DOI 10.1007/s00222-008-0153-7
- Xiuxiong Chen, On the existence of constant scalar curvature Kähler metric: a new perspective, Ann. Math. Qué. 42 (2018), no. 2, 169–189 (English, with English and French summaries). MR 3858468, DOI 10.1007/s40316-017-0086-x
- XiuXiong Chen, Long Li, and Mihai Păuni, Approximation of weak geodesics and subharmonicity of Mabuchi energy, Ann. Fac. Sci. Toulouse Math. (6) 25 (2016), no. 5, 935–957 (English, with English and French summaries). MR 3582114, DOI 10.5802/afst.1516
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), no. 1, 183–197. MR 3264766, DOI 10.1090/S0894-0347-2014-00799-2
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than $2\pi$, J. Amer. Math. Soc. 28 (2015), no. 1, 199–234. MR 3264767, DOI 10.1090/S0894-0347-2014-00800-6
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches $2\pi$ and completion of the main proof, J. Amer. Math. Soc. 28 (2015), no. 1, 235–278. MR 3264768, DOI 10.1090/S0894-0347-2014-00801-8
- X. X. Chen and W. Y. He, On the Calabi flow, Amer. J. Math. 130 (2008), no. 2, 539–570. MR 2405167, DOI 10.1353/ajm.2008.0018
- Xiuxiong Chen and Weiyong He, The complex Monge-Ampère equation on compact Kähler manifolds, Math. Ann. 354 (2012), no. 4, 1583–1600. MR 2993005, DOI 10.1007/s00208-012-0780-6
- Xiuxiong Chen, Tamás Darvas, and Weiyong He, Compactness of Kähler metrics with bounds on Ricci curvature and $\mathcal I$ functional, Calc. Var. Partial Differential Equations 58 (2019), no. 4, Paper No. 139, 9. MR 3984099, DOI 10.1007/s00526-019-1572-6
- X.-X. Chen, M. Paun, and Y. Zeng, On deformation of extremal metrics, arXiv:1506.01290, 2015.
- Xiuxiong Chen and Bing Wang, On the conditions to extend Ricci flow(III), Int. Math. Res. Not. IMRN 10 (2013), 2349–2367. MR 3061942, DOI 10.1093/imrn/rns117
- Xiuxiong Chen and Yuanqi Wang, $C^{2,\alpha }$-estimate for Monge-Ampère equations with Hölder-continuous right hand side, Ann. Global Anal. Geom. 49 (2016), no. 2, 195–204. MR 3464220, DOI 10.1007/s10455-015-9487-8
- R. J. Conlon and F. Rochon, New examples of complete Calabi Yau metrics on $\mathbb {C}^n (n\geq 3)$, arXiv:1705.08788, 2017.
- T. Darvas, Envelopes and geodesics in spaces of Kähler potentials, arXiv:1401.7318, 2014.
- Tamás Darvas, The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015), 182–219. MR 3406499, DOI 10.1016/j.aim.2015.08.005
- Ruadhaí Dervan, Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not. IMRN 15 (2016), 4728–4783. MR 3564626, DOI 10.1093/imrn/rnv291
- S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13–33. MR 1736211, DOI 10.1090/trans2/196/02
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Qing Han and Fanghua Lin, Elliptic partial differential equations, 2nd ed., Courant Lecture Notes in Mathematics, vol. 1, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011. MR 2777537
- Weiyong He, On the regularity of the complex Monge-Ampère equations, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1719–1727. MR 2869156, DOI 10.1090/S0002-9939-2011-11178-X
- Weiyong He and Yu Zeng, Constant scalar curvature equation and regularity of its weak solution, Comm. Pure Appl. Math. 72 (2019), no. 2, 422–448. MR 3896025, DOI 10.1002/cpa.21790
- Sławomir Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1, 69–117. MR 1618325, DOI 10.1007/BF02392879
- Haozhao Li, Bing Wang, and Kai Zheng, Regularity scales and convergence of the Calabi flow, J. Geom. Anal. 28 (2018), no. 3, 2050–2101. MR 3833786, DOI 10.1007/s12220-017-9896-y
- Chao Li, Jiayu Li, and Xi Zhang, A $\mathcal C^{2,\alpha }$ estimate of the complex Monge-Ampère equation, J. Funct. Anal. 275 (2018), no. 1, 149–169. MR 3799626, DOI 10.1016/j.jfa.2018.01.020
- Yang Li, A new complete Calabi-Yau metric on $\Bbb C^3$, Invent. Math. 217 (2019), no. 1, 1–34. MR 3958789, DOI 10.1007/s00222-019-00861-w
- A. V. Pogorelov, The Dirichlet problem for the multidimensional analogue of the Monge-Ampère equation, Dokl. Akad. Nauk SSSR 201 (1971), 790–793 (Russian). MR 293228
- Julius Ross and Richard Thomas, An obstruction to the existence of constant scalar curvature Kähler metrics, J. Differential Geom. 72 (2006), no. 3, 429–466. MR 2219940
- G. Székelyhidi, Fully nonlinear elliptic equations on compact Hermitian manifolds, arXiv:1501.02762, 2015.
- G. Székelyhidi, Degenerations of $\mathbb {C}^n$ and Calabi-Yau metrics, arXiv:1706.00357, 2017.
- Miles Simon, Some integral curvature estimates for the Ricci flow in four dimensions, Comm. Anal. Geom. 28 (2020), no. 3, 707–727. MR 4124141, DOI 10.4310/CAG.2020.v28.n3.a7
- Jeffrey Streets, Long time existence of minimizing movement solutions of Calabi flow, Adv. Math. 259 (2014), 688–729. MR 3197669, DOI 10.1016/j.aim.2014.03.027
- Gang Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_1(M)>0$, Invent. Math. 89 (1987), no. 2, 225–246. MR 894378, DOI 10.1007/BF01389077
- Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, DOI 10.1007/s002220050176
- Bing Wang, On the conditions to extend Ricci flow(II), Int. Math. Res. Not. IMRN 14 (2012), 3192–3223. MR 2946223, DOI 10.1093/imrn/rnr141
- Yu Wang, On the $C^{2,\alpha }$-regularity of the complex Monge-Ampère equation, Math. Res. Lett. 19 (2012), no. 4, 939–946. MR 3008426, DOI 10.4310/MRL.2012.v19.n4.a16
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
Bibliographic Information
- Xiuxiong Chen
- Affiliation: Institute of Geometry and Physics, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China AND Department of Mathematics, Stony Brook University, Stony Brook, NY, 11794-3651, USA
- MR Author ID: 632654
- Email: xiu@math.sunysb.edu
- Jingrui Cheng
- Affiliation: Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, WI, 53706, USA AND Department of Mathematics, Stony Brook University, Stony Brook, NY, 11794-3651, USA
- MR Author ID: 1185151
- Email: jingrui.cheng@stonybrook.edu
- Received by editor(s): February 27, 2018
- Received by editor(s) in revised form: February 24, 2020, June 3, 2020, and July 26, 2020
- Published electronically: June 7, 2021
- Additional Notes: The first named author was partially supported by NSF grant DMS-1515795 and Simons Foundation grant 605796
- © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 34 (2021), 909-936
- MSC (2020): Primary 53C21, 53C55; Secondary 35J30, 35J60, 35J96
- DOI: https://doi.org/10.1090/jams/967
- MathSciNet review: 4301557
Dedicated: Dedicated to Sir Simon Donaldson for his 60th birthday