The conformal group of a compact simply connected Lorentzian manifold
HTML articles powered by AMS MathViewer
- by Karin Melnick and Vincent Pecastaing;
- J. Amer. Math. Soc. 35 (2022), 81-122
- DOI: https://doi.org/10.1090/jams/976
- Published electronically: July 12, 2021
- HTML | PDF | Request permission
Abstract:
We prove that the conformal group of a closed, simply connected, real analytic Lorentzian manifold is compact. D’Ambra proved in 1988 that the isometry group of such a manifold is compact [Invent. Math. 92 (1988), pp. 555–565]. Our result implies the Lorentzian Lichnerowicz Conjecture for real analytic Lorentzian manifolds with finite fundamental group.References
- Dmitri Alekseevski, Self-similar Lorentzian manifolds, Ann. Global Anal. Geom. 3 (1985), no. 1, 59–84. MR 812313, DOI 10.1007/BF00054491
- A. M. Amores, Vector fields of a finite type $G$-structure, J. Differential Geometry 14 (1979), no. 1, 1–6 (1980). MR 577874
- Scot Adams and Garrett Stuck, The isometry group of a compact Lorentz manifold. I, II, Invent. Math. 129 (1997), no. 2, 239–261, 263–287. MR 1465326, DOI 10.1007/s002220050163
- —, The isometry group of a compact Lorentz manifold II, Inv. Math. 129 (1997), no. 2, 263–287.
- Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5–42. MR 972342
- Uri Bader and Amos Nevo, Conformal actions of simple Lie groups on compact pseudo-Riemannian manifolds, J. Differential Geom. 60 (2002), no. 3, 355–387. MR 1950171
- Andreas Čap and Karin Melnick, Essential Killing fields of parabolic geometries, Indiana Univ. Math. J. 62 (2013), no. 6, 1917–1953. MR 3205536, DOI 10.1512/iumj.2013.62.5166
- Andreas Čap and Jan Slovák, Parabolic geometries. I, Mathematical Surveys and Monographs, vol. 154, American Mathematical Society, Providence, RI, 2009. Background and general theory. MR 2532439, DOI 10.1090/surv/154
- G. D’Ambra, Isometry groups of Lorentz manifolds, Invent. Math. 92 (1988), no. 3, 555–565. MR 939475, DOI 10.1007/BF01393747
- Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207, DOI 10.1007/978-1-4757-2201-7
- G. D’Ambra and M. Gromov, Lectures on transformation groups: geometry and dynamics, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 19–111. MR 1144526
- Charles Frances and Karin Melnick, Conformal actions of nilpotent groups on pseudo-Riemannian manifolds, Duke Math. J. 153 (2010), no. 3, 511–550. MR 2667424, DOI 10.1215/00127094-2010-030
- Charles Frances and Karin Melnick, Formes normales pour les champs conformes pseudo-riemanniens, Bull. Soc. Math. France 141 (2013), no. 3, 377–421 (French, with English and French summaries). MR 3157055, DOI 10.24033/bsmf.2652
- Charles Frances, Lorentzian Kleinian groups, Comment. Math. Helv. 80 (2005), no. 4, 883–910. MR 2182704, DOI 10.4171/CMH/38
- Charles Frances, Causal conformal vector fields, and singularities of twistor spinors, Ann. Global Anal. Geom. 32 (2007), no. 3, 277–295. MR 2336178, DOI 10.1007/s10455-007-9060-1
- Charles Frances, Dégénerescence locale des transformations conformes pseudo-riemanniennes, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 5, 1627–1669 (French, with English and French summaries). MR 3025150, DOI 10.5802/aif.2732
- Charles Frances, Local dynamics of conformal vector fields, Geom. Dedicata 158 (2012), 35–59. MR 2922702, DOI 10.1007/s10711-011-9619-7
- C. Frances, About pseudo-Riemannian Lichnerowicz conjecture, Transform. Groups 20 (2015), no. 4, 1015–1022. MR 3416437, DOI 10.1007/s00031-015-9317-x
- Charles Frances and Abdelghani Zeghib, Some remarks on conformal pseudo-Riemannian actions of simple Lie groups, Math. Res. Lett. 12 (2005), no. 1, 49–56. MR 2122729, DOI 10.4310/MRL.2005.v12.n1.a5
- Claude Godbillon, Feuilletages, Progress in Mathematics, vol. 98, Birkhäuser Verlag, Basel, 1991 (French). Études géométriques. [Geometric studies]; With a preface by G. Reeb. MR 1120547
- Michael Gromov, Rigid transformations groups, Géométrie différentielle (Paris, 1986) Travaux en Cours, vol. 33, Hermann, Paris, 1988, pp. 65–139. MR 955852
- André Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv. 32 (1958), 248–329 (French). MR 100269, DOI 10.1007/BF02564582
- Anthony W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1399083, DOI 10.1007/978-1-4757-2453-0
- Shoshichi Kobayashi, Transformation groups in differential geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1972 edition. MR 1336823
- Jacqueline Lelong-Ferrand, Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8$^\textrm {o}$ (2) 39 (1971), no. 5, 44 (French). MR 322739
- Jacqueline Ferrand, The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (1996), no. 2, 277–291. MR 1371767, DOI 10.1007/BF01446294
- Karin Melnick, A Frobenius theorem for Cartan geometries, with applications, Enseign. Math. (2) 57 (2011), no. 1-2, 57–89. MR 2850584, DOI 10.4171/LEM/57-1-3
- Dave Witte Morris, Ratner’s theorems on unipotent flows, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2005. MR 2158954
- Morio Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971/72), 247–258. MR 303464
- V. Pecastaing, Semi-simple Lie groups acting conformally on compact Lorentz manifolds, arXiv:1506.08693, 2015.
- Vincent Pecastaing, On two theorems about local automorphisms of geometric structures, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 1, 175–208 (English, with English and French summaries). MR 3477874, DOI 10.5802/aif.3009
- Vincent Pecastaing, Lorentzian manifolds with a conformal action of $\rm SL(2,R)$, Comment. Math. Helv. 93 (2018), no. 2, 401–439. MR 3811757, DOI 10.4171/CMH/439
- V. Pecastaing, Conformal actions of real-rank 1 simple Lie groups on pseudo-Riemannian manifolds, Transform. Groups 24 (2019), no. 4, 1213–1239. MR 4038091, DOI 10.1007/s00031-019-09527-6
- I. R. Shafarevich, Basic algebraic geometry, Die Grundlehren der mathematischen Wissenschaften, Band 213, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch. MR 366917
- R. W. Sharpe, Differential geometry, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997. Cartan’s generalization of Klein’s Erlangen program; With a foreword by S. S. Chern. MR 1453120
- Gerald Teschl, Ordinary differential equations and dynamical systems, Graduate Studies in Mathematics, vol. 140, American Mathematical Society, Providence, RI, 2012. MR 2961944, DOI 10.1090/gsm/140
- Abdelghani Zeghib, The identity component of the isometry group of a compact Lorentz manifold, Duke Math. J. 92 (1998), no. 2, 321–333. MR 1612793, DOI 10.1215/S0012-7094-98-09208-0
- Abdelghani Zeghib, Sur les espaces-temps homogènes, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 551–576 (French, with English summary). MR 1668344, DOI 10.2140/gtm.1998.1.551
- A. Zeghib, Isometry groups and geodesic foliations of Lorentz manifolds. I. Foundations of Lorentz dynamics, Geom. Funct. Anal. 9 (1999), no. 4, 775–822. MR 1719606, DOI 10.1007/s000390050102
- A. Zeghib, Isometry groups and geodesic foliations of Lorentz manifolds. II. Geometry of analytic Lorentz manifolds with large isometry groups, Geom. Funct. Anal. 9 (1999), no. 4, 823–854. MR 1719610, DOI 10.1007/s000390050103
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Karin Melnick
- Affiliation: Department of Mathematics, 4176 Campus Drive, University of Maryland, College Park, Maryland 20742
- MR Author ID: 819221
- Email: karin@math.umd.edu
- Vincent Pecastaing
- Affiliation: Laboratoire J.A. Dieudonné, UMR CNRS 7351, Université Côte d’Azur, Parc Valrose, 06108 Nice, Cedex 2, France
- MR Author ID: 1154224
- ORCID: 0000-0003-2118-5238
- Email: vincent.pecastaing@unice.fr
- Received by editor(s): February 13, 2020
- Published electronically: July 12, 2021
- Additional Notes: This project was initiated during an extended visit by the second author to the University of Maryland supported by GEAR Network grant DMS-1107452, 1107263, 1107367 from the NSF. The first author gratefully acknowledges support from NSF grant DMS-1255462 and from the Max-Planck-Institut für Mathematik in Bonn, where she was a Visiting Scientist during much of the research for this paper. The second author was also partially supported by FNR grants INTER/ANR/15/11211745 and OPEN/16/11405402 while a Postdoctoral Researcher at the University of Luxembourg during much of the research and the writing of this paper.
- © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 35 (2022), 81-122
- MSC (2020): Primary 53C50, 57S20
- DOI: https://doi.org/10.1090/jams/976
- MathSciNet review: 4322390