The Seiberg-Witten equations and the length spectrum of hyperbolic three-manifolds
HTML articles powered by AMS MathViewer
- by Francesco Lin and Michael Lipnowski;
- J. Amer. Math. Soc. 35 (2022), 233-293
- DOI: https://doi.org/10.1090/jams/982
- Published electronically: August 2, 2021
- HTML | PDF | Request permission
Abstract:
We exhibit the first examples of hyperbolic three-manifolds for which the Seiberg-Witten equations do not admit any irreducible solution. Our approach relies on hyperbolic geometry in an essential way; it combines an explicit upper bound for the first eigenvalue on coexact $1$-forms $\lambda _1^*$ on rational homology spheres which admit irreducible solutions together with a version of the Selberg trace formula relating the spectrum of the Laplacian on coexact $1$-forms with the volume and complex length spectrum of a hyperbolic three-manifold. Using these relationships, we also provide precise numerical bounds on $\lambda _1^*$ for several hyperbolic rational homology spheres.References
- Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087. With an appendix by Agol, Daniel Groves, and Jason Manning. MR 3104553, DOI 10.1016/j.procs.2013.05.269
- Arthur L. Besse, Einstein manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008. Reprint of the 1987 edition. MR 2371700
- Nicolas Bergeron and Laurent Clozel, Spectre automorphe des variétés hyperboliques et applications topologiques, Astérisque 303 (2005), xx+218 (French, with English and French summaries). MR 2245761
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720, DOI 10.1007/978-3-642-58088-8
- Steven Boyer, Cameron McA. Gordon, and Liam Watson, On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013), no. 4, 1213–1245. MR 3072799, DOI 10.1007/s00208-012-0852-7
- Nicolas Bergeron and Akshay Venkatesh, The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu 12 (2013), no. 2, 391–447. MR 3028790, DOI 10.1017/S1474748012000667
- Andrew R. Booker and Andreas Strömbergsson, Numerical computations with the trace formula and the Selberg eigenvalue conjecture, J. Reine Angew. Math. 607 (2007), 113–161. MR 2338122, DOI 10.1515/CRELLE.2007.047
- A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR 1721403, DOI 10.1090/surv/067
- Abderrazak Bouaziz, Intégrales orbitales sur les groupes de Lie réductifs, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 5, 573–609 (French, with English summary). MR 1296557
- Peter Buser, Geometry and spectra of compact Riemann surfaces, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2010. Reprint of the 1992 edition. MR 2742784, DOI 10.1007/978-0-8176-4992-0
- M. Culler, N. Dunfield, M. Goerner, and J. Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds, available at https://snappy.math.uic.edu.
- Vincent Colin, Paolo Ghiggini, and Ko Honda, An exposition of the equivalence of Heegaard Floer homology and embedded contact homology, Characters in low-dimensional topology, Contemp. Math., vol. 760, Amer. Math. Soc., [Providence], RI, [2020] ©2020, pp. 45–101. MR 4193921, DOI 10.1090/conm/760/15286
- N. Cornish and D. Spergel, On the eigenmodes of compact hyperbolic 3-manifolds, arXiv:math/9906017, 1999.
- J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39–79. MR 405514, DOI 10.1007/BF01405172
- N. Dunfield, L-spaces and left-orderability: an experimental survey, Seminar talk at BIRS, available at http://www.birs.ca/events/2013/5-day-workshops/13w5108/videos/watch/201304111500-Dunfield.html, 2013.
- J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyperbolic space, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Harmonic analysis and number theory. MR 1483315, DOI 10.1007/978-3-662-03626-6
- Ronald Fintushel and Ronald J. Stern, Constructing lens spaces by surgery on knots, Math. Z. 175 (1980), no. 1, 33–51. MR 595630, DOI 10.1007/BF01161380
- Ronald Fintushel and Ronald J. Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. (3) 61 (1990), no. 1, 109–137. MR 1051101, DOI 10.1112/plms/s3-61.1.109
- David Fried, Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. Math. 84 (1986), no. 3, 523–540. MR 837526, DOI 10.1007/BF01388745
- Kim A. Frøyshov, Monopole Floer homology for rational homology 3-spheres, Duke Math. J. 155 (2010), no. 3, 519–576. MR 2738582, DOI 10.1215/00127094-2010-060
- David Futer and Christian Millichap, Spectrally similar incommensurable 3-manifolds, Proc. Lond. Math. Soc. (3) 115 (2017), no. 2, 411–447. MR 3684110, DOI 10.1112/plms.12045
- David Gabai, Foliations and the topology of $3$-manifolds, J. Differential Geom. 18 (1983), no. 3, 445–503. MR 723813
- David Gabai, The Smale conjecture for hyperbolic 3-manifolds: $\textrm {Isom}(M^3)\simeq \textrm {Diff}(M^3)$, J. Differential Geom. 58 (2001), no. 1, 113–149. MR 1895350
- David Gabai, G. Robert Meyerhoff, and Peter Milley, Volumes of tubes in hyperbolic 3-manifolds, J. Differential Geom. 57 (2001), no. 1, 23–46. MR 1871490
- David Gabai, Robert Meyerhoff, and Peter Milley, Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009), no. 4, 1157–1215. MR 2525782, DOI 10.1090/S0894-0347-09-00639-0
- Joshua Evan Greene, A spanning tree model for the Heegaard Floer homology of a branched double-cover, J. Topol. 6 (2013), no. 2, 525–567. MR 3065184, DOI 10.1112/jtopol/jtt007
- Joshua Evan Greene and Adam Simon Levine, Strong Heegaard diagrams and strong L-spaces, Algebr. Geom. Topol. 16 (2016), no. 6, 3167–3208. MR 3584256, DOI 10.2140/agt.2016.16.3167
- Michael Gromov, Hyperbolic manifolds (according to Thurston and Jørgensen), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin, 1981, pp. 40–53. MR 636516
- Jonathan Hanselman, Jacob Rasmussen, Sarah Dean Rasmussen, and Liam Watson, L-spaces, taut foliations, and graph manifolds, Compos. Math. 156 (2020), no. 3, 604–612. MR 4055962, DOI 10.1112/s0010437x19007814
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,R)$. Vol. I, Lecture Notes in Mathematics, Vol. 548, Springer-Verlag, Berlin-New York, 1976. MR 439755
- Neil Hoffman, Kazuhiro Ichihara, Masahide Kashiwagi, Hidetoshi Masai, Shin’ichi Oishi, and Akitoshi Takayasu, Verified computations for hyperbolic 3-manifolds, Exp. Math. 25 (2016), no. 1, 66–78. MR 3424833, DOI 10.1080/10586458.2015.1029599
- C. Hodgson and J. Weeks, A census of closed hyperbolic 3-manifolds, ftp://ftp.northnet.org/pub/weeks/SnapPea/ClosedCensus.
- Kaiki Taro Inoue, Computation of eigenmodes on a compact hyperbolic $3$-space, Classical Quantum Gravity 16 (1999), no. 10, 3071–3094. MR 1717816, DOI 10.1088/0264-9381/16/10/304
- Pierre Jammes, Minoration du spectre des variétés hyperboliques de dimension 3, Bull. Soc. Math. France 140 (2012), no. 2, 237–255 (French, with English and French summaries). MR 2950180, DOI 10.24033/bsmf.2627
- Anthony W. Knapp, Lie groups beyond an introduction, 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1920389
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- Çağatay Kutluhan, Yi-Jen Lee, and Clifford Henry Taubes, $\textrm {HF}=\textrm {HM}$, I: Heegaard Floer homology and Seiberg-Witten Floer homology, Geom. Topol. 24 (2020), no. 6, 2829–2854. MR 4194305, DOI 10.2140/gt.2020.24.2829
- P. B. Kronheimer and T. S. Mrowka, Witten’s conjecture and property P, Geom. Topol. 8 (2004), 295–310. MR 2023280, DOI 10.2140/gt.2004.8.295
- Peter Kronheimer and Tomasz Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, vol. 10, Cambridge University Press, Cambridge, 2007. MR 2388043, DOI 10.1017/CBO9780511543111
- P. B. Kronheimer and T. S. Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011), 97–208. MR 2805599, DOI 10.1007/s10240-010-0030-y
- P. Kronheimer, T. Mrowka, P. Ozsváth, and Z. Szabó, Monopoles and lens space surgeries, Ann. of Math. (2) 165 (2007), no. 2, 457–546. MR 2299739, DOI 10.4007/annals.2007.165.457
- Marc Lackenby, The volume of hyperbolic alternating link complements, Proc. London Math. Soc. (3) 88 (2004), no. 1, 204–224. With an appendix by Ian Agol and Dylan Thurston. MR 2018964, DOI 10.1112/S0024611503014291
- Francesco Lin, Lectures on monopole Floer homology, Proceedings of the Gökova Geometry-Topology Conference 2015, Gökova Geometry/Topology Conference (GGT), Gökova, 2016, pp. 39–80. MR 3526838
- Francesco Lin, Monopole Floer homology and the spectral geometry of three-manifolds, Comm. Anal. Geom. 28 (2020), no. 5, 1211–1219. MR 4165316, DOI 10.4310/CAG.2020.v28.n5.a2
- Benjamin Linowitz and John Voight, Small isospectral and nonisometric orbifolds of dimension 2 and 3, Math. Z. 281 (2015), no. 1-2, 523–569. MR 3384884, DOI 10.1007/s00209-015-1500-1
- Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957, DOI 10.1007/978-1-4757-6720-9
- Matilde Marcolli and Bai-Ling Wang, Equivariant Seiberg-Witten Floer homology, Comm. Anal. Geom. 9 (2001), no. 3, 451–639. MR 1895135, DOI 10.4310/CAG.2001.v9.n3.a1
- B. Martelli, An introduction to geometric topology, arXiv:1610.02592, 2016.
- Jeffrey McGowan, The $p$-spectrum of the Laplacian on compact hyperbolic three manifolds, Math. Ann. 297 (1993), no. 4, 725–745. MR 1245416, DOI 10.1007/BF01459527
- H. P. McKean, An upper bound to the spectrum of $\Delta$ on a manifold of negative curvature, J. Differential Geometry 4 (1970), 359–366. MR 266100
- H. P. McKean, Correction to: “Selberg’s trace formula as applied to a compact Riemann surface” (Comm. Pure Appl. Math. 25 (1972), 225–246), Comm. Pure Appl. Math. 27 (1974), 134. MR 473167, DOI 10.1002/cpa.3160270109
- Alexander Mednykh and Andrei Vesnin, Visualization of the isometry group action on the Fomenko-Matveev-Weeks manifold, J. Lie Theory 8 (1998), no. 1, 51–66. MR 1616790
- John J. Millson, Closed geodesics and the $\eta$-invariant, Ann. of Math. (2) 108 (1978), no. 1, 1–39. MR 501204, DOI 10.2307/1970928
- John W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996. MR 1367507
- Tomasz Mrowka, Peter Ozsváth, and Baozhen Yu, Seiberg-Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997), no. 4, 685–791. MR 1611061, DOI 10.4310/CAG.1997.v5.n4.a3
- Werner Müller, Weyl’s law in the theory of automorphic forms, Groups and analysis, London Math. Soc. Lecture Note Ser., vol. 354, Cambridge Univ. Press, Cambridge, 2008, pp. 133–163. MR 2528465, DOI 10.1017/CBO9780511721410.008
- John Roe, Elliptic operators, topology and asymptotic methods, 2nd ed., Pitman Research Notes in Mathematics Series, vol. 395, Longman, Harlow, 1998. MR 1670907
- P. Sarnak, The arithmetic and geometry of some hyperbolic three-manifolds, Acta Math. 151 (1983), no. 3-4, 253–295. MR 723012, DOI 10.1007/BF02393209
- Peter Sarnak, Selberg’s eigenvalue conjecture, Notices Amer. Math. Soc. 42 (1995), no. 11, 1272–1277. MR 1355461
- Sucharit Sarkar and Jiajun Wang, An algorithm for computing some Heegaard Floer homologies, Ann. of Math. (2) 171 (2010), no. 2, 1213–1236. MR 2630063, DOI 10.4007/annals.2010.171.1213
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- Atle Selberg, Discontinuous groups and harmonic analysis, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 177–189. MR 176097
- S. Sivek and R. Zentner, A menagerie of SU(2)-cyclic 3-manifolds, Preprint, arXiv:1910.13270, 2019.
- Tsuneo Tamagawa, On Selberg’s trace formula, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 363–386. MR 123633
- Clifford Henry Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007), 2117–2202. MR 2350473, DOI 10.2140/gt.2007.11.2117
- Maria Trnková, Rigorous computations with an approximate Dirichlet domain, Topology Appl. 268 (2019), 106900, 9. MR 4014749, DOI 10.1016/j.topol.2019.106900
- D. Whitehouse. An introduction to the trace formula. Preprint (2010). Available at http://wwwf.imperial.ac.uk/b̃uzzard/MSRI/Whitehouse_tf.pdf
- B. Zhan, Computations in bordered Heegaard Floer homology, available at https://github.com/bzhan/bfh_python, 2013.
Bibliographic Information
- Francesco Lin
- Affiliation: Department of Mathematics, Columbia University, Room 509, MC 4406 2990 Broadway, New York, NY 10027
- MR Author ID: 1169363
- Email: flin@math.columbia.edu
- Michael Lipnowski
- Affiliation: Department of Mathematics and Statistics, McGill University, Burnside Hall, Room 1005, 805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B9
- MR Author ID: 1140735
- Email: michael.lipnowski@mcgill.ca
- Received by editor(s): November 21, 2018
- Received by editor(s) in revised form: February 13, 2020, November 30, 2020, and March 22, 2021
- Published electronically: August 2, 2021
- Additional Notes: The first author was partially supported by NSF grant DMS-1807242
- © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 35 (2022), 233-293
- MSC (2020): Primary 57R58, 57K32
- DOI: https://doi.org/10.1090/jams/982
- MathSciNet review: 4322393