On the tensor semigroup of affine Kac-Moody lie algebras
HTML articles powered by AMS MathViewer
- by Nicolas Ressayre HTML | PDF
- J. Amer. Math. Soc. 35 (2022), 309-360 Request permission
Abstract:
The support of the tensor product decomposition of integrable irreducible highest weight representations of a symmetrizable Kac-Moody Lie algebra $\mathfrak {g}$ defines a semigroup of triples of weights. Namely, given $\lambda$ in the set $P_+$ of dominant integral weights, $V(\lambda )$ denotes the irreducible representation of $\mathfrak {g}$ with highest weight $\lambda$. We are interested in the tensor semigroup \begin{equation*} \Gamma _{\mathbb {N}}(\mathfrak {g})≔\{(\lambda _1,\lambda _2,\mu )\in P_{+}^3\,|\, V(\mu )\subset V(\lambda _1)\otimes V(\lambda _2)\}, \end{equation*} and in the tensor cone $\Gamma (\mathfrak {g})$ it generates: \begin{equation*} \Gamma (\mathfrak {g})≔\{(\lambda _1,\lambda _2,\mu )\in P_{+,{\mathbb {Q}}}^3\,|\,\exists N\geq 1 \quad V(N\mu )\subset V(N\lambda _1)\otimes V(N\lambda _2)\}. \end{equation*} Here, $P_{+,{\mathbb {Q}}}$ denotes the rational convex cone generated by $P_+$.
In the special case when $\mathfrak {g}$ is a finite-dimensional semisimple Lie algebra, the tensor semigroup is known to be finitely generated and hence the tensor cone to be convex polyhedral. Moreover, the cone $\Gamma (\mathfrak {g})$ is described in Belkale and Kumar [Invent. Math. 166 (2006), pp. 185–228] by an explicit finite list of inequalities.
In general, $\Gamma (\mathfrak {g})$ is neither polyhedral, nor closed. In this article we describe the closure of $\Gamma (\mathfrak {g})$ by an explicit countable family of linear inequalities for any untwisted affine Lie algebra, which is the most important class of infinite-dimensional Kac-Moody algebra. This solves a Brown-Kumar’s conjecture in this case (see Brown and Kumar [Math. Ann. 360 (2014), pp. 901–936]).
The difference between the tensor cone and the tensor semigroup is measured by the saturation factors. Namely, a positive integer $d$ is called a saturation factor, if $V(N\lambda _1)\otimes V(N\lambda _2)$ contains $V(N\mu )$ for some positive integer $N$ then $V(d\lambda _1)\otimes V(d\lambda _2)$ contains $V(d\mu )$, assuming that $\mu -\lambda _1-\lambda _2$ belongs to the root lattice. For $\mathfrak {g}={\mathfrak {sl}}_n$, the famous Knutson-Tao theorem asserts that $d=1$ is a saturation factor (see Knutson and Tao [J. Amer. Math. Soc. 12 (1999), pp. 1055–1090]). More generally, for any simple Lie algebra, explicit saturation factors are known. In the Kac-Moody case, $\Gamma _{\mathbb {N}}(\mathfrak {g})$ is not necessarily finitely generated and hence the existence of such a factor is unclear a priori. Here, we obtain explicit saturation factors for any affine Kac-Moody Lie algebra. For example, in type $\tilde A_n$, we prove that any integer $d\geq 2$ is a saturation factor, generalizing the case $\tilde A_1$ shown in Brown and Kumar [Math. Ann. 360 (2014), pp. 901–936].
References
- Michael Artin, Jean-Etienne Bertin, Michel Demazure, Alexander Grothendieck, Pierre Gabriel, Michel Raynaud, and Jean-Pierre Serre. Schémas en groupes. Séminaire de Géométrie Algébrique de l’Institut des Hautes Études Scientifiques. Institut des Hautes Études Scientifiques, Paris, 1963/1966.
- Anton Alekseev, Masha Podkopaeva, and Andras Szenes, The Horn problem and planar networks, Adv. Math. 318 (2017), 678–710. MR 3689752, DOI 10.1016/j.aim.2017.01.019
- S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett. 5 (1998), no. 6, 817–836. MR 1671192, DOI 10.4310/MRL.1998.v5.n6.a10
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- Prakash Belkale, Local systems on $\Bbb P^1-S$ for $S$ a finite set, Compositio Math. 129 (2001), no. 1, 67–86. MR 1856023, DOI 10.1023/A:1013195625868
- Prakash Belkale, Geometric proofs of Horn and saturation conjectures, J. Algebraic Geom. 15 (2006), no. 1, 133–173. MR 2177198, DOI 10.1090/S1056-3911-05-00420-0
- Prakash Belkale and Shrawan Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math. 166 (2006), no. 1, 185–228. MR 2242637, DOI 10.1007/s00222-006-0516-x
- Prakash Belkale and Shrawan Kumar, Eigencone, saturation and Horn problems for symplectic and odd orthogonal groups, J. Algebraic Geom. 19 (2010), no. 2, 199–242. MR 2580675, DOI 10.1090/S1056-3911-09-00517-7
- Merrick Brown and Shrawan Kumar, A study of saturated tensor cone for symmetrizable Kac-Moody algebras, Math. Ann. 360 (2014), no. 3-4, 901–936. MR 3273648, DOI 10.1007/s00208-014-1040-8
- Prakash Belkale and Shrawan Kumar, The multiplicative eigenvalue problem and deformed quantum cohomology, Adv. Math. 288 (2016), 1309–1359. MR 3436409, DOI 10.1016/j.aim.2015.09.034
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2005. Translated from the 1975 and 1982 French originals by Andrew Pressley. MR 2109105
- Michel Brion. Restriction de représentations et projections d’orbites coadjointes [d’après Belkale, Kumar et Ressayre]. Astérisque, (339):Exp. No. 1043, x, 30, 2012. Séminaire Bourbaki. Vol. 2011/2012.
- Arkady Berenstein and Reyer Sjamaar, Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, J. Amer. Math. Soc. 13 (2000), no. 2, 433–466. MR 1750957, DOI 10.1090/S0894-0347-00-00327-1
- Nicole Berline, Michèle Vergne, and Michael Walter, The Horn inequalities from a geometric point of view, Enseign. Math. 63 (2017), no. 3-4, 403–470. MR 3852177, DOI 10.4171/LEM/63-3/4-7
- W. Crawley-Boevey and Ch. Geiss, Horn’s problem and semi-stability for quiver representations, Representations of algebra. Vol. I, II, Beijing Norm. Univ. Press, Beijing, 2002, pp. 40–48. MR 2067369
- Igor V. Dolgachev and Yi Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998), 5–56. With an appendix by Nicolas Ressayre. MR 1659282, DOI 10.1007/BF02698859
- Harm Derksen and Jerzy Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc. 13 (2000), no. 3, 467–479. MR 1758750, DOI 10.1090/S0894-0347-00-00331-3
- William Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 209–249. MR 1754641, DOI 10.1090/S0273-0979-00-00865-X
- P. Goddard, A. Kent, and D. Olive, Virasoro algebras and coset space models, Phys. Lett. B 152 (1985), no. 1-2, 88–92. MR 778819, DOI 10.1016/0370-2693(85)91145-1
- Stéphane Gaussent and Guy Rousseau, Spherical Hecke algebras for Kac-Moody groups over local fields, Ann. of Math. (2) 180 (2014), no. 3, 1051–1087. MR 3245012, DOI 10.4007/annals.2014.180.3.5
- G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), no. 2, 333–356. MR 665160, DOI 10.1007/BF01393821
- Alfred Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225–241. MR 140521, DOI 10.2140/pjm.1962.12.225
- Jiuzu Hong and Linhui Shen, Tensor invariants, saturation problems, and Dynkin automorphisms, Adv. Math. 285 (2015), 629–657. MR 3406511, DOI 10.1016/j.aim.2015.08.015
- N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48. MR 185016, DOI 10.1007/BF02684396
- T. Kambayashi, Pro-affine algebras, Ind-affine groups and the Jacobian problem, J. Algebra 185 (1996), no. 2, 481–501. MR 1417382, DOI 10.1006/jabr.1996.0336
- Frances Kirwan, Convexity properties of the moment mapping. III, Invent. Math. 77 (1984), no. 3, 547–552. MR 759257, DOI 10.1007/BF01388838
- Michael Kapovich, Shrawan Kumar, and John J. Millson, The eigencone and saturation for Spin(8), Pure Appl. Math. Q. 5 (2009), no. 2, Special Issue: In honor of Friedrich Hirzebruch., 755–780. MR 2508902, DOI 10.4310/PAMQ.2009.v5.n2.a7
- Michael Kapovich, Bernhard Leeb, and John J. Millson, The generalized triangle inequalities in symmetric spaces and buildings with applications to algebra, Mem. Amer. Math. Soc. 192 (2008), no. 896, viii+83. MR 2369545, DOI 10.1090/memo/0896
- Alexander A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), no. 3, 419–445. MR 1654578, DOI 10.1007/s000290050037
- Misha Kapovich and John J. Millson, Structure of the tensor product semigroup, Asian J. Math. 10 (2006), no. 3, 493–539. MR 2253157, DOI 10.4310/AJM.2006.v10.n3.a2
- Michael Kapovich and John J. Millson, A path model for geodesics in Euclidean buildings and its applications to representation theory, Groups Geom. Dyn. 2 (2008), no. 3, 405–480. MR 2415306, DOI 10.4171/GGD/46
- Shrawan Kumar and Madhav V. Nori, Positivity of the cup product in cohomology of flag varieties associated to Kac-Moody groups, Internat. Math. Res. Notices 14 (1998), 757–763. MR 1637105, DOI 10.1155/S1073792898000452
- Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. MR 114875, DOI 10.2307/2372999
- Masaki Kashiwara and Mark Shimozono, Equivariant $K$-theory of affine flag manifolds and affine Grothendieck polynomials, Duke Math. J. 148 (2009), no. 3, 501–538. MR 2527324, DOI 10.1215/00127094-2009-032
- Allen Knutson and Terence Tao, The honeycomb model of $\textrm {GL}_n(\textbf {C})$ tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), no. 4, 1055–1090. MR 1671451, DOI 10.1090/S0894-0347-99-00299-4
- Allen Knutson, Terence Tao, and Christopher Woodward, The honeycomb model of $\textrm {GL}_n(\Bbb C)$ tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), no. 1, 19–48. MR 2015329, DOI 10.1090/S0894-0347-03-00441-7
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198, DOI 10.1007/978-1-4612-0105-2
- Shrawan Kumar, A generalization of Cachazo-Douglas-Seiberg-Witten conjecture for symmetric spaces, Math. Ann. 346 (2010), no. 1, 67–84. MR 2558887, DOI 10.1007/s00208-009-0385-x
- Shrawan Kumar, A survey of the additive eigenvalue problem, Transform. Groups 19 (2014), no. 4, 1051–1148. With an appendix by M. Kapovich. MR 3278861, DOI 10.1007/s00031-014-9287-4
- Shrawan Kumar, Additive eigenvalue problem, Eur. Math. Soc. Newsl. 98 (2015), 20–27. MR 3445186
- Shrawan Kumar, Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac-Moody groups, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 8, 2469–2519. With an appendix by Masaki Kashiwara. MR 3668065, DOI 10.4171/JEMS/722
- Victor G. Kac and Minoru Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Adv. in Math. 70 (1988), no. 2, 156–236. MR 954660, DOI 10.1016/0001-8708(88)90055-2
- V. B. Lidskiĭ, On the characteristic numbers of the sum and product of symmetric matrices, Doklady Akad. Nauk SSSR (N.S.) 75 (1950), 769–772 (Russian). MR 0039686
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- Linda Ness, A stratification of the null cone via the moment map, Amer. J. Math. 106 (1984), no. 6, 1281–1329. With an appendix by David Mumford. MR 765581, DOI 10.2307/2374395
- Chris Peters, An introduction to complex algebraic geometry with emphasis on the theory of surfaces, Course notes available at https://www-fourier.ujf-grenoble.fr/~peters/ConfsAndSchools/surface.f/surfcourse.pd, 2004.
- B. Pasquier and N. Ressayre, The saturation property for branching rules—examples, Exp. Math. 22 (2013), no. 3, 299–312. MR 3171094, DOI 10.1080/10586458.2013.813746
- C. P. Ramanujam, A note on automorphism groups of algebraic varieties, Math. Ann. 156 (1964), 25–33. MR 166198, DOI 10.1007/BF01359978
- N. Ressayre, Geometric invariant theory and the generalized eigenvalue problem, Invent. Math. 180 (2010), no. 2, 389–441. MR 2609246, DOI 10.1007/s00222-010-0233-3
- N. Ressayre, Multiplicative formulas in Schubert calculus and quiver representation, Indag. Math. (N.S.) 22 (2011), no. 1-2, 87–102. MR 2853617, DOI 10.1016/j.indag.2011.08.004
- N. Ressayre, On the quantum horn problem, ArXiv e-prints, pages 1–34, October 2013.
- Edward Richmond, A multiplicative formula for structure constants in the cohomology of flag varieties, Michigan Math. J. 61 (2012), no. 1, 3–17. MR 2903999, DOI 10.1307/mmj/1331222845
- I. R. Shafarevich, On some infinite-dimensional groups. II, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 1, 214–226, 240 (Russian). MR 607583
- Reyer Sjamaar, Convexity properties of the moment mapping re-examined, Adv. Math. 138 (1998), no. 1, 46–91. MR 1645052, DOI 10.1006/aima.1998.1739
- Immanuel Stampfli, On the topologies on ind-varieties and related irreducibility questions, J. Algebra 372 (2012), 531–541. MR 2990025, DOI 10.1016/j.jalgebra.2012.08.019
- Robert C. Thompson and Linda J. Freede, On the eigenvalues of sums of Hermitian matrices, Linear Algebra Appl. 4 (1971), 369–376. MR 288132, DOI 10.1007/bf01817787
- Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479 (German). MR 1511670, DOI 10.1007/BF01456804
- Helmut Wielandt, An extremum property of sums of eigenvalues, Proc. Amer. Math. Soc. 6 (1955), 106–110. MR 67842, DOI 10.1090/S0002-9939-1955-0067842-9
Additional Information
- Nicolas Ressayre
- Affiliation: Institut Camille Jordan (ICJ), UMR CNRS 5208, Université Claude Bernard Lyon I, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne cedex, France
- MR Author ID: 642966
- Email: ressayre@math.univ-lyon1.fr
- Received by editor(s): August 31, 2017
- Received by editor(s) in revised form: June 22, 2019, and October 1, 2020
- Published electronically: September 9, 2021
- Additional Notes: The author was partially supported by the French National Agency (Project GeoLie ANR-15-CE40-0012) and the Institut Universitaire de France (IUF)
- © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 35 (2022), 309-360
- MSC (2020): Primary 20G44, 14M15
- DOI: https://doi.org/10.1090/jams/975
- MathSciNet review: 4374953