Control of eigenfunctions on surfaces of variable curvature
HTML articles powered by AMS MathViewer
- by Semyon Dyatlov, Long Jin and Stéphane Nonnenmacher;
- J. Amer. Math. Soc. 35 (2022), 361-465
- DOI: https://doi.org/10.1090/jams/979
- Published electronically: August 16, 2021
- HTML | PDF | Request permission
Abstract:
We prove a microlocal lower bound on the mass of high energy eigenfunctions of the Laplacian on compact surfaces of negative curvature, and more generally on surfaces with Anosov geodesic flows. This implies controllability for the Schrödinger equation by any nonempty open set, and shows that every semiclassical measure has full support. We also prove exponential energy decay for solutions to the damped wave equation on such surfaces, for any nontrivial damping coefficient. These results extend previous works (see Semyon Dyatlov and Long Jin [Acta Math. 220 (2018), pp. 297–339] and Long Jin [Comm. Math. Phys. 373 (2020), pp. 771–794]), which considered the setting of surfaces of constant negative curvature.
The proofs use the strategy of Semyon Dyatlov and Long Jin [Acta Math. 220 (2018), pp. 297–339 and Long Jin [Comm. Math. Phys. 373 (2020), pp. 771–794] and rely on the fractal uncertainty principle of Jean Bourgain and Semyon Dyatlov [Ann. of Math. (2) 187 (2018), pp. 825–867]. However, in the variable curvature case the stable/unstable foliations are not smooth, so we can no longer associate to these foliations a pseudodifferential calculus of the type used by Semyon Dyatlov and Joshua Zahl [Geom. Funct. Anal. 26 (2016), pp. 1011–1094]. Instead, our argument uses Egorov’s theorem up to local Ehrenfest time and the hyperbolic parametrix of Stéphane Nonnenmacher and Maciej Zworski [Acta Math. 203 (2009), pp. 149–233], together with the $C^{1+}$ regularity of the stable/unstable foliations.
References
- Ivana Alexandrova, Semi-classical wavefront set and Fourier integral operators, Canad. J. Math. 60 (2008), no. 2, 241–263. MR 2398747, DOI 10.4153/CJM-2008-011-7
- Nalini Anantharaman, Entropy and the localization of eigenfunctions, Ann. of Math. (2) 168 (2008), no. 2, 435–475. MR 2434883, DOI 10.4007/annals.2008.168.435
- Nalini Anantharaman, Exponential decay for products of Fourier integral operators, Methods Appl. Anal. 18 (2011), no. 2, 165–181. MR 2847483, DOI 10.4310/MAA.2011.v18.n2.a3
- Nalini Anantharaman and Matthieu Léautaud, Sharp polynomial decay rates for the damped wave equation on the torus, Anal. PDE 7 (2014), no. 1, 159–214. With an appendix by Stéphane Nonnenmacher. MR 3219503, DOI 10.2140/apde.2014.7.159
- Nalini Anantharaman and Stéphane Nonnenmacher, Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 7, 2465–2523 (English, with English and French summaries). Festival Yves Colin de Verdière. MR 2394549, DOI 10.5802/aif.2340
- Nalini Anantharaman and Stéphane Nonnenmacher, Entropy of semiclassical measures of the Walsh-quantized baker’s map, Ann. Henri Poincaré 8 (2007), no. 1, 37–74. MR 2299192, DOI 10.1007/s00023-006-0299-z
- Nalini Anantharaman and Gabriel Rivière, Dispersion and controllability for the Schrödinger equation on negatively curved manifolds, Anal. PDE 5 (2012), no. 2, 313–338. MR 2970709, DOI 10.2140/apde.2012.5.313
- Nalini Anantharaman and Lior Silberman, A Haar component for quantum limits on locally symmetric spaces, Israel J. Math. 195 (2013), no. 1, 393–447. MR 3101255, DOI 10.1007/s11856-012-0133-x
- D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 224110
- Claude Bardos, Gilles Lebeau, and Jeffrey Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), no. 5, 1024–1065. MR 1178650, DOI 10.1137/0330055
- Shimon Brooks, Logarithmic-scale quasimodes that do not equidistribute, Int. Math. Res. Not. IMRN 22 (2015), 11934–11960. MR 3456709, DOI 10.1093/imrn/rnv050
- Jean Bourgain and Semyon Dyatlov, Spectral gaps without the pressure condition, Ann. of Math. (2) 187 (2018), no. 3, 825–867. MR 3779959, DOI 10.4007/annals.2018.187.3.5
- Nicolas Burq and Maciej Zworski, Geometric control in the presence of a black box, J. Amer. Math. Soc. 17 (2004), no. 2, 443–471. MR 2051618, DOI 10.1090/S0894-0347-04-00452-7
- Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985), no. 3, 497–502 (French, with English summary). MR 818831, DOI 10.1007/BF01209296
- Kiril Datchev and Semyon Dyatlov, Fractal Weyl laws for asymptotically hyperbolic manifolds, Geom. Funct. Anal. 23 (2013), no. 4, 1145–1206. MR 3077910, DOI 10.1007/s00039-013-0225-8
- Mouez Dimassi and Johannes Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, Cambridge, 1999. MR 1735654, DOI 10.1017/CBO9780511662195
- Semyon Dyatlov, Resonance projectors and asymptotics for $r$-normally hyperbolic trapped sets, J. Amer. Math. Soc. 28 (2015), no. 2, 311–381. MR 3300697, DOI 10.1090/S0894-0347-2014-00822-5
- Semyon Dyatlov, Control of eigenfunctions on hyperbolic surfaces: an application of fractal uncertainty principle, Journ. Équ. Dériv. Partielles (2017), Exp. no. 4.
- Semyon Dyatlov, Notes on hyperbolic dynamics, preprint, arXiv:1805.11660v1.
- Semyon Dyatlov, An introduction to fractal uncertainty principle, J. Math. Phys. 60 (2019), no. 8, 081505, 31. MR 3993411, DOI 10.1063/1.5094903
- Semyon Dyatlov and Colin Guillarmou, Microlocal limits of plane waves and Eisenstein functions, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 2, 371–448 (English, with English and French summaries). MR 3215926, DOI 10.24033/asens.2217
- Semyon Dyatlov and Long Jin, Semiclassical measures on hyperbolic surfaces have full support, Acta Math. 220 (2018), no. 2, 297–339. MR 3849286, DOI 10.4310/ACTA.2018.v220.n2.a3
- Semyon Dyatlov, Long Jin, and Stéphane Nonnenmacher, Control of eigenfunctions on surfaces of variable curvature, preprint, arXiv:1906.08923v1.
- Semyon Dyatlov and Joshua Zahl, Spectral gaps, additive energy, and a fractal uncertainty principle, Geom. Funct. Anal. 26 (2016), no. 4, 1011–1094. MR 3558305, DOI 10.1007/s00039-016-0378-3
- Semyon Dyatlov and Maciej Zworski, Mathematical theory of scattering resonances, Graduate Studies in Mathematics, vol. 200, American Mathematical Society, Providence, RI, 2019. MR 3969938, DOI 10.1090/gsm/200
- Suresh Eswarathasan and Stéphane Nonnenmacher, Strong scarring of logarithmic quasimodes, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 6, 2307–2347 (English, with English and French summaries). MR 3742467, DOI 10.5802/aif.3137
- Suresh Eswarathasan and Lior Silberman, Scarring of quasimodes on hyperbolic manifolds, Nonlinearity 31 (2018), no. 1, 1–29. MR 3746630, DOI 10.1088/1361-6544/aa92e3
- Frédéric Faure, Stéphane Nonnenmacher, and Stephan De Bièvre, Scarred eigenstates for quantum cat maps of minimal periods, Comm. Math. Phys. 239 (2003), no. 3, 449–492. MR 2000926, DOI 10.1007/s00220-003-0888-3
- Alain Grigis and Johannes Sjöstrand, Microlocal analysis for differential operators, London Mathematical Society Lecture Note Series, vol. 196, Cambridge University Press, Cambridge, 1994. An introduction. MR 1269107, DOI 10.1017/CBO9780511721441
- Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, Mathematical Surveys, No. 14, American Mathematical Society, Providence, RI, 1977. MR 516965, DOI 10.1090/surv/014
- Victor Guillemin and Shlomo Sternberg, Semi-classical analysis, International Press, Boston, MA, 2013. MR 3157301
- A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire, J. Math. Pures Appl. (9) 68 (1989), no. 4, 457–465 (1990) (French, with English summary). MR 1046761
- Philip Hartman, Ordinary differential equations, Classics in Applied Mathematics, vol. 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA; MR0658490 (83e:34002)]; With a foreword by Peter Bates. MR 1929104, DOI 10.1137/1.9780898719222
- Lars Hörmander, The analysis of linear partial differential operators. I, 2nd ed., Springer Study Edition, Springer-Verlag, Berlin, 1990. Distribution theory and Fourier analysis. MR 1065136, DOI 10.1007/978-3-642-61497-2
- Lars Hörmander, The analysis of linear partial differential operators. III, Classics in Mathematics, Springer, Berlin, 2007. Pseudo-differential operators; Reprint of the 1994 edition. MR 2304165, DOI 10.1007/978-3-540-49938-1
- Lars Hörmander, The analysis of linear partial differential operators. IV, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1994. Fourier integral operators; Corrected reprint of the 1985 original. MR 1481433
- S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 5–61 (1991). MR 1087392, DOI 10.1007/BF02699130
- S. Jaffard, Contrôle interne exact des vibrations d’une plaque rectangulaire, Portugal. Math. 47 (1990), no. 4, 423–429 (French, with English summary). MR 1090480
- Long Jin, Control for Schrödinger equation on hyperbolic surfaces, Math. Res. Lett. 25 (2018), no. 6, 1865–1877. MR 3934848, DOI 10.4310/MRL.2018.v25.n6.a8
- Long Jin, Damped wave equations on compact hyperbolic surfaces, Comm. Math. Phys. 373 (2020), no. 3, 771–794. MR 4061399, DOI 10.1007/s00220-019-03650-x
- Long Jin and Ruixiang Zhang, Fractal uncertainty principle with explicit exponent, Math. Ann. 376 (2020), no. 3-4, 1031–1057. MR 4081109, DOI 10.1007/s00208-019-01902-8
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- Dubi Kelmer, Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus, Ann. of Math. (2) 171 (2010), no. 2, 815–879. MR 2630057, DOI 10.4007/annals.2010.171.815
- Wilhelm P. A. Klingenberg, Riemannian geometry, 2nd ed., De Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin, 1995. MR 1330918, DOI 10.1515/9783110905120
- G. Lebeau, Contrôle de l’équation de Schrödinger, J. Math. Pures Appl. (9) 71 (1992), no. 3, 267–291 (French, with English summary). MR 1172452
- G. Lebeau, Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993) Math. Phys. Stud., vol. 19, Kluwer Acad. Publ., Dordrecht, 1996, pp. 73–109 (French, with English and French summaries). MR 1385677
- G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. Partial Differential Equations 20 (1995), no. 1-2, 335–356 (French). MR 1312710, DOI 10.1080/03605309508821097
- Elon Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2) 163 (2006), no. 1, 165–219. MR 2195133, DOI 10.4007/annals.2006.163.165
- Alexander Logunov and Eugenia Malinnikova, Quantitative propagation of smallness for solutions of elliptic equations, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 2391–2411. MR 3966855
- Jens Marklof, Arithmetic quantum chaos, Encyclopedia of Mathematical Physics, vol. 1, Elsevier, Oxford, 2006, pp. 212–220.
- Stéphane Nonnenmacher and Maciej Zworski, Quantum decay rates in chaotic scattering, Acta Math. 203 (2009), no. 2, 149–233. MR 2570070, DOI 10.1007/s11511-009-0041-z
- Jeffrey Rauch and Michael Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds, Comm. Pure Appl. Math. 28 (1975), no. 4, 501–523. MR 397184, DOI 10.1002/cpa.3160280405
- Gabriel Rivière, Entropy of semiclassical measures in dimension 2, Duke Math. J. 155 (2010), no. 2, 271–336. MR 2736167, DOI 10.1215/00127094-2010-056
- Zeév Rudnick and Peter Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), no. 1, 195–213. MR 1266075, DOI 10.1007/BF02099418
- Peter Sarnak, Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 2, 211–228. MR 2774090, DOI 10.1090/S0273-0979-2011-01323-4
- Emmanuel Schenck, Energy decay for the damped wave equation under a pressure condition, Comm. Math. Phys. 300 (2010), no. 2, 375–410. MR 2728729, DOI 10.1007/s00220-010-1105-9
- A. I. Šnirel′man, Ergodic properties of eigenfunctions, Uspehi Mat. Nauk 29 (1974), no. 6(180), 181–182 (Russian). MR 402834
- Alexander Shnirelman, Statistical properties of eigenfunctions, Proceedings of the All-USSR School on differential equations with infinitely many independent variables and dynamical systems with infinitely many degrees of freedom, Dilijan, Armenia, May 21–June 3, 1973, Armenian Academy of Sciences, Erevan, 1974.
- Steven Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), no. 4, 919–941. MR 916129, DOI 10.1215/S0012-7094-87-05546-3
- Steve Zelditch, Recent developments in mathematical quantum chaos, Current developments in mathematics, 2009, Int. Press, Somerville, MA, 2010, pp. 115–204. MR 2757360
- Maciej Zworski, Semiclassical analysis, Graduate Studies in Mathematics, vol. 138, American Mathematical Society, Providence, RI, 2012. MR 2952218, DOI 10.1090/gsm/138
Bibliographic Information
- Semyon Dyatlov
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720; and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 830509
- ORCID: 0000-0002-6594-7604
- Email: dyatlov@math.mit.edu
- Long Jin
- Affiliation: Yau Mathematical Sciences Center, Tsinghua University, People’s Republic of China
- MR Author ID: 1076590
- Email: jinlong@mail.tsinghua.edu.cn
- Stéphane Nonnenmacher
- Affiliation: Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay cedex, France
- ORCID: 0000-0001-5989-9362
- Email: stephane.nonnenmacher@u-psud.fr
- Received by editor(s): August 22, 2019
- Received by editor(s) in revised form: January 27, 2021
- Published electronically: August 16, 2021
- Additional Notes: The first author was supported by Clay Research Fellowship, Sloan Fellowship, and NSF CAREER Grant DMS-1749858. The second author was supported by Recruitment Program of Young Overseas Talent Plan. The third author was partially supported by the Agence National de la Recherche, through the grants GERASIC-ANR-13-BS01-0007-02 and ISDEEC-ANR-16-CE40-0013. This project was initiated during the IAS Emerging Topics Workshop on Quantum Chaos and Fractal Uncertainty Principle in October 2017
- © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 35 (2022), 361-465
- MSC (2020): Primary 58J51
- DOI: https://doi.org/10.1090/jams/979
- MathSciNet review: 4374954