Regularity theorem for totally nonnegative flag varieties
HTML articles powered by AMS MathViewer
- by Pavel Galashin, Steven N. Karp and Thomas Lam;
- J. Amer. Math. Soc. 35 (2022), 513-579
- DOI: https://doi.org/10.1090/jams/983
- Published electronically: September 24, 2021
- HTML | PDF | Request permission
Previous version: Original version posted September 24, 2021
Corrected version: This version replaces a version that included a production error.
Abstract:
We show that the totally nonnegative part of a partial flag variety $G/P$ (in the sense of Lusztig) is a regular CW complex, confirming a conjecture of Williams. In particular, the closure of each positroid cell inside the totally nonnegative Grassmannian is homeomorphic to a ball, confirming a conjecture of Postnikov.References
- Nima Arkani-Hamed, Jacob Bourjaily, Freddy Cachazo, Alexander Goncharov, Alexander Postnikov, and Jaroslav Trnka, Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge, 2016. MR 3467729, DOI 10.1017/CBO9781316091548
- Nima Arkani-Hamed and Jaroslav Trnka, The amplituhedron, J. High Energy Phys., 10 (2014), 33, DOI 10.1007/JHEP10(2014)030.
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- Ruth Britto, Freddy Cachazo, Bo Feng, and Edward Witten, Direct proof of the tree-level scattering amplitude recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005), no. 18, 181602, 4. MR 2260976, DOI 10.1103/PhysRevLett.94.181602
- Yuly Billig and Matthew Dyer, Decompositions of Bruhat type for the Kac-Moody groups, Nova J. Algebra Geom. 3 (1994), no. 1, 11–39. MR 1332937
- Pavle V. M. Blagojević, Pavel Galashin, Nevena Palić, and Günter M. Ziegler, Some more amplituhedra are contractible, Selecta Math. (N.S.) 25 (2019), no. 1, Paper No. 8, 11. MR 3908855, DOI 10.1007/s00029-019-0462-2
- Anders Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), no. 1, 159–183. MR 570784, DOI 10.1090/S0002-9947-1980-0570784-2
- A. Björner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5 (1984), no. 1, 7–16. MR 746039, DOI 10.1016/S0195-6698(84)80012-8
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Morton Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74–76. MR 117695, DOI 10.1090/S0002-9904-1960-10400-4
- Morton Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331–341. MR 133812, DOI 10.2307/1970177
- Anders Björner and Michelle Wachs, Bruhat order of Coxeter groups and shellability, Adv. in Math. 43 (1982), no. 1, 87–100. MR 644668, DOI 10.1016/0001-8708(82)90029-9
- Arkady Berenstein and Andrei Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), no. 1, 128–166. MR 1456321, DOI 10.1007/PL00000363
- Nicolas Chevalier, Total positivity criteria for partial flag varieties, J. Algebra 348 (2011), 402–415. MR 2852249, DOI 10.1016/j.jalgebra.2011.10.002
- Michael W. Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series, vol. 32, Princeton University Press, Princeton, NJ, 2008. MR 2360474
- James F. Davis, Patricia Hersh, and Ezra Miller, Fibers of maps to totally nonnegative spaces, arXiv:1903.01420, 2019.
- Gopal Danaraj and Victor Klee, Shellings of spheres and polytopes, Duke Math. J. 41 (1974), 443–451. MR 345113
- Balazs Elek. Toric surfaces with equivariant Kazhdan–Lusztig atlases. arXiv:1610.04667, 2016.
- Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1–211. MR 2233852, DOI 10.1007/s10240-006-0039-4
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- Sergey Fomin and Michael Shapiro, Stratified spaces formed by totally positive varieties, Michigan Math. J. 48 (2000), 253–270. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786489, DOI 10.1307/mmj/1030132717
- Sergey Fomin and Andrei Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), no. 2, 335–380. MR 1652878, DOI 10.1090/S0894-0347-99-00295-7
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, DOI 10.1090/S0894-0347-01-00385-X
- F. Gantmakher and M. Krein, Sur les matrices complètement non négatives et oscillatoires, Compositio Math. 4 (1937), 445–476 (French). MR 1556987
- Pavel Galashin, Steven N. Karp, and Thomas Lam. The totally nonnegative Grassmannian is a ball. arXiv:1707.02010, 2017.
- Pavel Galashin, Steven N. Karp, and Thomas Lam, The totally nonnegative part of $G/P$ is a ball, Adv. Math. 351 (2019), 614–620. MR 3954040, DOI 10.1016/j.aim.2019.05.009
- Jonna Gill, Svante Linusson, Vincent Moulton, and Mike Steel, A regular decomposition of the edge-product space of phylogenetic trees, Adv. in Appl. Math. 41 (2008), no. 2, 158–176. MR 2424625, DOI 10.1016/j.aam.2006.07.007
- Pavel Galashin and Pavlo Pylyavskyy, Ising model and the positive orthogonal Grassmannian, Duke Math. J. 169 (2020), no. 10, 1877–1942. MR 4118643, DOI 10.1215/00127094-2019-0086
- Olivier Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de surface, J. Differential Geom. 80 (2008), no. 3, 391–431 (French, with English summary). MR 2472478
- Olivier Guichard and Anna Wienhard, Positivity and higher Teichmüller theory, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2018, pp. 289–310. MR 3887772
- K. R. Goodearl and M. Yakimov, Poisson structures on affine spaces and flag varieties. II, Trans. Amer. Math. Soc. 361 (2009), no. 11, 5753–5780. MR 2529913, DOI 10.1090/S0002-9947-09-04654-6
- Ziad Haddad, INFINITE-DIMENSIONAL FLAG VARIETIES, ProQuest LLC, Ann Arbor, MI, 1984. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2941065
- Ziad Haddad, A Coxeter group approach to Schubert varieties, Infinite-dimensional groups with applications (Berkeley, Calif., 1984) Math. Sci. Res. Inst. Publ., vol. 4, Springer, New York, 1985, pp. 157–165. MR 823319, DOI 10.1007/978-1-4612-1104-4_{6}
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Xuhua He, Total positivity in the De Concini-Procesi compactification, Represent. Theory 8 (2004), 52–71. MR 2048587, DOI 10.1090/S1088-4165-04-00213-4
- Xuhua He, A subalgebra of 0-Hecke algebra, J. Algebra 322 (2009), no. 11, 4030–4039. MR 2556136, DOI 10.1016/j.jalgebra.2009.04.003
- Patricia Hersh, CW posets after the Poincare conjecture, arXiv:1411.1296, 2014.
- Patricia Hersh, Regular cell complexes in total positivity, Invent. Math. 197 (2014), no. 1, 57–114. MR 3219515, DOI 10.1007/s00222-013-0480-1
- Patricia Hersh and Richard Kenyon, Shellability of face posets of electrical networks and the CW poset property, Adv. in Appl. Math. 127 (2021), Paper No. 102178, 37. MR 4220681, DOI 10.1016/j.aam.2021.102178
- Xuhua He, Allen Knutson, and Jiang-Hua Lu, in preparation.
- Xuhua He and Thomas Lam, Projected Richardson varieties and affine Schubert varieties, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 6, 2385–2412 (English, with English and French summaries). MR 3449584, DOI 10.5802/aif.2990
- Daoji Huang, A Kazhdan–Lusztig atlas on $G/P$, arXiv:1910.13017, 2019.
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 396773, DOI 10.1007/978-1-4684-9443-3
- Rachel Karpman, Bridge graphs and Deodhar parametrizations for positroid varieties, J. Combin. Theory Ser. A 142 (2016), 113–146. MR 3499493, DOI 10.1016/j.jcta.2016.03.005
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- Allen Knutson, Thomas Lam, and David E. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710–1752. MR 3123307, DOI 10.1112/S0010437X13007240
- Allen Knutson, Thomas Lam, and David E. Speyer, Projections of Richardson varieties, J. Reine Angew. Math. 687 (2014), 133–157. MR 3176610, DOI 10.1515/crelle-2012-0045
- Antoni A. Kosinski, Differential manifolds, Pure and Applied Mathematics, vol. 138, Academic Press, Inc., Boston, MA, 1993. MR 1190010
- Victor G. Kac and Dale H. Peterson, Regular functions on certain infinite-dimensional groups, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 141–166. MR 717610
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 645390, DOI 10.1515/9781400881505
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198, DOI 10.1007/978-1-4612-0105-2
- Shrawan Kumar, Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac-Moody groups, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 8, 2469–2519. With an appendix by Masaki Kashiwara. MR 3668065, DOI 10.4171/JEMS/722
- Steven N. Karp and Lauren K. Williams, The $m=1$ amplituhedron and cyclic hyperplane arrangements, Int. Math. Res. Not. IMRN 5 (2019), 1401–1462. MR 3920352, DOI 10.1093/imrn/rnx140
- Allen Knutson, Alexander Woo, and Alexander Yong, Singularities of Richardson varieties, Math. Res. Lett. 20 (2013), no. 2, 391–400. MR 3151655, DOI 10.4310/MRL.2013.v20.n2.a14
- François Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006), no. 1, 51–114. MR 2221137, DOI 10.1007/s00222-005-0487-3
- Thomas Lam, Totally nonnegative Grassmannian and Grassmann polytopes, Current developments in mathematics 2014, Int. Press, Somerville, MA, 2016, pp. 51–152. MR 3468251
- Thomas Lam, Electroid varieties and a compactification of the space of electrical networks, Adv. Math. 338 (2018), 549–600. MR 3861712, DOI 10.1016/j.aim.2018.09.014
- John M. Lee, Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
- Thomas Lam and Pavlo Pylyavskyy, Total positivity in loop groups, I: Whirls and curls, Adv. Math. 230 (2012), no. 3, 1222–1271. MR 2921179, DOI 10.1016/j.aim.2012.03.012
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- G. Lusztig, Total positivity in partial flag manifolds, Represent. Theory 2 (1998), 70–78. MR 1606402, DOI 10.1090/S1088-4165-98-00046-6
- George Lusztig, Introduction to total positivity, Positivity in Lie theory: open problems, De Gruyter Exp. Math., vol. 26, de Gruyter, Berlin, 1998, pp. 133–145. MR 1648700
- G. Lusztig, Total positivity in reductive groups, II, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 4, 403–459. MR 4054343, DOI 10.21915/bimas.2019402
- G. Lusztig, Positive structures in Lie theory, ICCM Not. 8 (2020), no. 1, 50–54. MR 4166342, DOI 10.4310/ICCM.2020.v8.n1.a4
- Albert T. Lundell and Stephen Weingram, The topology of CW complexes, The University Series in Higher Mathematics, Van Nostrand Reinhold Co., New York, 1969. MR 3822092, DOI 10.1007/978-1-4684-6254-8
- John Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, NJ, 1965. Notes by L. Siebenmann and J. Sondow. MR 190942, DOI 10.1515/9781400878055
- R. J. Marsh and K. Rietsch, Parametrizations of flag varieties, Represent. Theory 8 (2004), 212–242. MR 2058727, DOI 10.1090/S1088-4165-04-00230-4
- Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159, 2002.
- Dale H. Peterson and Victor G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 6, i, 1778–1782. MR 699439, DOI 10.1073/pnas.80.6.1778
- Alexander Postnikov, Total positivity, Grassmannians, and networks, http://math.mit.edu/~apost/papers/tpgrass.pdf, 2007.
- Alexander Postnikov, David Speyer, and Lauren Williams, Matching polytopes, toric geometry, and the totally non-negative Grassmannian, J. Algebraic Combin. 30 (2009), no. 2, 173–191. MR 2525057, DOI 10.1007/s10801-008-0160-1
- Konstanze Rietsch, An algebraic cell decomposition of the nonnegative part of a flag variety, J. Algebra 213 (1999), no. 1, 144–154. MR 1674668, DOI 10.1006/jabr.1998.7665
- K. Rietsch, Closure relations for totally nonnegative cells in $G/P$, Math. Res. Lett. 13 (2006), no. 5-6, 775–786. MR 2280774, DOI 10.4310/MRL.2006.v13.n5.a8
- Konstanze Rietsch, A mirror symmetric construction of $qH^\ast _T(G/P)_{(q)}$, Adv. Math. 217 (2008), no. 6, 2401–2442. MR 2397456, DOI 10.1016/j.aim.2007.08.010
- Konstanze Rietsch and Lauren Williams, The totally nonnegative part of $G/P$ is a CW complex, Transform. Groups 13 (2008), no. 3-4, 839–853. MR 2452618, DOI 10.1007/s00031-008-9024-y
- Konstanze Rietsch and Lauren Williams, Discrete Morse theory for totally non-negative flag varieties, Adv. Math. 223 (2010), no. 6, 1855–1884. MR 2601003, DOI 10.1016/j.aim.2009.10.011
- Isac Schoenberg, Über variationsvermindernde lineare Transformationen, Math. Z. 32 (1930), no. 1, 321–328 (German). MR 1545169, DOI 10.1007/BF01194637
- Stephen Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391–406. MR 137124, DOI 10.2307/1970239
- Michelle Bernadette Snider, Affine patches on positroid varieties and affine pipe dreams, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–Cornell University. MR 2890196
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
- Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596, DOI 10.1090/S0273-0979-1988-15685-6
- A. M. Whitney, A reduction theorem for totally positive matrices, J. Analyse Math. 2 (1952), 88–92 (English, with Hebrew summary). MR 53173, DOI 10.1007/BF02786969
- Lauren K. Williams, Shelling totally nonnegative flag varieties, J. Reine Angew. Math. 609 (2007), 1–21. MR 2350779, DOI 10.1515/CRELLE.2007.059
- Harold Williams, Double Bruhat cells in Kac-Moody groups and integrable systems, Lett. Math. Phys. 103 (2013), no. 4, 389–419. MR 3029326, DOI 10.1007/s11005-012-0604-3
Bibliographic Information
- Pavel Galashin
- Affiliation: Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, California 90025
- MR Author ID: 1149936
- ORCID: 0000-0002-8109-4496
- Email: galashin@math.ucla.edu
- Steven N. Karp
- Affiliation: LaCIM, Université du Québec à Montréal, CP 8888, Succ. Centre-ville, Montréal, Québec H3C 3P8, Canada
- MR Author ID: 896855
- ORCID: 0000-0001-7163-667X
- Email: karp.steven@courrier.uqam.ca
- Thomas Lam
- Affiliation: Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, Michigan 48109-1043
- MR Author ID: 679285
- ORCID: 0000-0003-2346-7685
- Email: tfylam@umich.edu
- Received by editor(s): July 8, 2019
- Received by editor(s) in revised form: October 2, 2020
- Published electronically: September 24, 2021
- Additional Notes: The first author was supported by an Alfred P. Sloan Research Fellowship and by the National Science Foundation under Grants No. DMS-1954121 and No. DMS-2046915. The second author was supported by the Natural Sciences and Engineering Research Council of Canada under a Postdoctoral Fellowship. The third author was supported by a von Neumann Fellowship from the Institute for Advanced Study and by the National Science Foundation under Grants No. DMS-1464693 and No. DMS-1953852.
- © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 35 (2022), 513-579
- MSC (2020): Primary 14M15; Secondary 05E45, 15B48, 20G20
- DOI: https://doi.org/10.1090/jams/983
- MathSciNet review: 4374956