Kudla–Rapoport cycles and derivatives of local densities
HTML articles powered by AMS MathViewer
- by Chao Li and Wei Zhang;
- J. Amer. Math. Soc. 35 (2022), 705-797
- DOI: https://doi.org/10.1090/jams/988
- Published electronically: September 10, 2021
- HTML | PDF | Request permission
Abstract:
We prove the local Kudla–Rapoport conjecture, which is a precise identity between the arithmetic intersection numbers of special cycles on unitary Rapoport–Zink spaces and the derivatives of local representation densities of hermitian forms. As a first application, we prove the global Kudla–Rapoport conjecture, which relates the arithmetic intersection numbers of special cycles on unitary Shimura varieties and the central derivatives of the Fourier coefficients of incoherent Eisenstein series. Combining previous results of Liu and Garcia–Sankaran, we also prove cases of the arithmetic Siegel–Weil formula in any dimension.References
- J. V. Armitage, On a theorem of Hecke in number fields and function fields, Invent. Math. 2 (1967), 238–246. MR 213324, DOI 10.1007/BF01425516
- Olivier Brinon and Brian Conrad, CMI summer school notes on p-adic hodge theory, http://math.stanford.edu/~conrad/papers/notes.pdf, 2009.
- Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, Modularity of generating series of divisors on unitary Shimura varieties, Astérisque 421, Diviseurs arithmétiques sur les variétés orthogonales et unitaires de Shimura (2020), 7–125 (English, with English and French summaries). MR 4183376, DOI 10.24033/ast
- Raphaël Beuzart-Plessis, A new proof of the Jacquet-Rallis fundamental lemma, Duke Math. J. 170 (2021), no. 12, 2805–2814. MR 4305382, DOI 10.1215/00127094-2020-0090
- Christophe Breuil, Groupes $p$-divisibles, groupes finis et modules filtrés, Ann. of Math. (2) 152 (2000), no. 2, 489–549 (French, with French summary). MR 1804530, DOI 10.2307/2661391
- Jan Hendrik Bruinier and Tonghai Yang, Arithmetic degrees of special cycles and derivatives of Siegel Eisenstein series, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 5, 1613–1674. MR 4244514, DOI 10.4171/JEMS/1040
- Sungyoon Cho, The Basic Locus of the Unitary Shimura Variety with Parahoric Level Structure, and Special Cycles, ProQuest LLC, Ann Arbor, MI, 2019. Thesis (Ph.D.)–Northwestern University. MR 4035228
- Sungmun Cho and Takuya Yamauchi, A reformulation of the Siegel series and intersection numbers, Math. Ann. 377 (2020), no. 3-4, 1757–1826. MR 4126907, DOI 10.1007/s00208-020-01999-2
- Gerd Faltings, Group schemes with strict $\scr O$-action, Mosc. Math. J. 2 (2002), no. 2, 249–279. Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR 1944507, DOI 10.17323/1609-4514-2002-2-2-249-279
- Henri Gillet, Arithmetic intersection theory on Deligne-Mumford stacks, Motives and algebraic cycles, Fields Inst. Commun., vol. 56, Amer. Math. Soc., Providence, RI, 2009, pp. 93–109. MR 2562454
- Benedict H. Gross and Kevin Keating, On the intersection of modular correspondences, Invent. Math. 112 (1993), no. 2, 225–245. MR 1213101, DOI 10.1007/BF01232433
- Benedict H. Gross, On canonical and quasicanonical liftings, Invent. Math. 84 (1986), no. 2, 321–326. MR 833193, DOI 10.1007/BF01388810
- Henri Gillet and Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93–174 (1991). MR 1087394
- Luis E. Garcia and Siddarth Sankaran, Green forms and the arithmetic Siegel-Weil formula, Invent. Math. 215 (2019), no. 3, 863–975. MR 3935034, DOI 10.1007/s00222-018-0839-4
- Wee Teck Gan and Jiu-Kang Yu, Group schemes and local densities, Duke Math. J. 105 (2000), no. 3, 497–524. MR 1801770, DOI 10.1215/S0012-7094-00-10535-2
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
- Erich Hecke, Vorlesungen über die Theorie der algebraischen Zahlen. 2te Aufl, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1954 (German). MR 66417
- Alex Jay Henniges, Kisin-Ren classification of $\overline \omega$-divisible O-modules via the Dieudonne Crystal, ProQuest LLC, Ann Arbor, MI, 2016. Thesis (Ph.D.)–The University of Arizona. MR 3527252
- Yumiko Hironaka, Local zeta functions on Hermitian forms and its application to local densities, J. Number Theory 71 (1998), no. 1, 40–64. MR 1631034, DOI 10.1006/jnth.1998.2237
- Yumiko Hironaka, Spherical functions on $U(2n)/(U(n)\times U(n))$ and Hermitian Siegel series, Geometry and analysis of automorphic forms of several variables, Ser. Number Theory Appl., vol. 7, World Sci. Publ., Hackensack, NJ, 2012, pp. 120–159. MR 2908038, DOI 10.1142/9789814355605_{0}006
- Xuhua He, Chao Li, and Yihang Zhu, Fine Deligne-Lusztig varieties and arithmetic fundamental lemmas, Forum Math. Sigma 7 (2019), e47, 55. MR 4061970, DOI 10.1017/fms.2019.45
- Benjamin Howard, Linear invariance of intersections on unitary Rapoport-Zink spaces, Forum Math. 31 (2019), no. 5, 1265–1281. MR 4000587, DOI 10.1515/forum-2019-0023
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- F. Hirzebruch and D. Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math. 36 (1976), 57–113. MR 453649, DOI 10.1007/BF01390005
- Atsushi Ichino, A regularized Siegel-Weil formula for unitary groups, Math. Z. 247 (2004), no. 2, 241–277. MR 2064052, DOI 10.1007/s00209-003-0580-5
- Ronald Jacobowitz, Hermitian forms over local fields, Amer. J. Math. 84 (1962), 441–465. MR 150128, DOI 10.2307/2372982
- Hidenori Katsurada, An explicit formula for Siegel series, Amer. J. Math. 121 (1999), no. 2, 415–452. MR 1680317, DOI 10.1353/ajm.1999.0013
- Mark Kisin, Crystalline representations and $F$-crystals, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 459–496. MR 2263197, DOI 10.1007/978-0-8176-4532-8_{7}
- Yoshiyuki Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, vol. 106, Cambridge University Press, Cambridge, 1993. MR 1245266, DOI 10.1017/CBO9780511666155
- Stephen S. Kudla and John J. Millson, The theta correspondence and harmonic forms. I, Math. Ann. 274 (1986), no. 3, 353–378. MR 842618, DOI 10.1007/BF01457221
- Stephen S. Kudla and Michael Rapoport, Arithmetic Hirzebruch-Zagier cycles, J. Reine Angew. Math. 515 (1999), 155–244. MR 1717613, DOI 10.1515/crll.1999.076
- Stephen S. Kudla and Michael Rapoport, Cycles on Siegel threefolds and derivatives of Eisenstein series, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 695–756 (English, with English and French summaries). MR 1834500, DOI 10.1016/S0012-9593(00)01051-X
- Stephen S. Kudla and Michael Rapoport, Height pairings on Shimura curves and $p$-adic uniformization, Invent. Math. 142 (2000), no. 1, 153–223. MR 1784798, DOI 10.1007/s002220000087
- Stephen Kudla and Michael Rapoport, Special cycles on unitary Shimura varieties I. Unramified local theory, Invent. Math. 184 (2011), no. 3, 629–682. MR 2800697, DOI 10.1007/s00222-010-0298-z
- Stephen Kudla and Michael Rapoport, Special cycles on unitary Shimura varieties II: Global theory, J. Reine Angew. Math. 697 (2014), 91–157. MR 3281653, DOI 10.1515/crelle-2012-0121
- Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, On the derivative of an Eisenstein series of weight one, Internat. Math. Res. Notices 7 (1999), 347–385. MR 1683308, DOI 10.1155/S1073792899000185
- Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, Modular forms and special cycles on Shimura curves, Annals of Mathematics Studies, vol. 161, Princeton University Press, Princeton, NJ, 2006. MR 2220359, DOI 10.1515/9781400837168
- Stephen S. Kudla, Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J. 86 (1997), no. 1, 39–78. MR 1427845, DOI 10.1215/S0012-7094-97-08602-6
- Stephen S. Kudla, Central derivatives of Eisenstein series and height pairings, Ann. of Math. (2) 146 (1997), no. 3, 545–646. MR 1491448, DOI 10.2307/2952456
- Stephen S. Kudla, Special cycles and derivatives of Eisenstein series, Heegner points and Rankin $L$-series, Math. Sci. Res. Inst. Publ., vol. 49, Cambridge Univ. Press, Cambridge, 2004, pp. 243–270. MR 2083214, DOI 10.1017/CBO9780511756375.009
- Yifeng Liu, Arithmetic theta lifting and $L$-derivatives for unitary groups, I, Algebra Number Theory 5 (2011), no. 7, 849–921. MR 2928563, DOI 10.2140/ant.2011.5.849
- Yifeng Liu, Arithmetic theta lifting and $L$-derivatives for unitary groups, II, Algebra Number Theory 5 (2011), no. 7, 923–1000. MR 2928564, DOI 10.2140/ant.2011.5.923
- Yifeng Liu, Jacobi cycles and arithmetic relative trace formula (with an appendix by Chao Li and Yihang Zhu), Camb. J. Math. 9 (2021), no. 1, 1-147, DOI 10.4310/CJM.2021.v9.n1.a1.
- Chao Li and Yifeng Liu, Chow groups and $L$-derivatives of automorphic motives for unitary groups, to appear in Ann. of Math., arXiv E-prints, arXiv:2006.06139, June 2020.
- Chao Li and Yifeng Liu, Chow groups and $L$-derivatives of automorphic motives for unitary groups, II, arXiv E-prints, arXiv:2101.09485, January 2021.
- Chao Li, Michael Rapoport, and Wei Zhang, In preparation, 2021.
- G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101–159. MR 453885, DOI 10.1007/BF01408569
- Chao Li and Yihang Zhu, Remarks on the arithmetic fundamental lemma, Algebra Number Theory 11 (2017), no. 10, 2425–2445. MR 3744362, DOI 10.2140/ant.2017.11.2425
- Chao Li and Wei Zhang, On the arithmetic Siegel–Weil formula for GSpin Shimura varieties, arXiv e-prints, arXiv:2106.15038, June 2021.
- Andreas Mihatsch, Relative unitary RZ-spaces and the arithmetic fundamental lemma, J. Inst. Math. Jussieu, to appear.
- M. Rapoport, B. Smithling, and W. Zhang, On the arithmetic transfer conjecture for exotic smooth formal moduli spaces, Duke Math. J. 166 (2017), no. 12, 2183–2336. MR 3694568, DOI 10.1215/00127094-2017-0003
- M. Rapoport, B. Smithling, and W. Zhang, Regular formal moduli spaces and arithmetic transfer conjectures, Math. Ann. 370 (2018), no. 3-4, 1079–1175. MR 3770164, DOI 10.1007/s00208-017-1526-2
- M. Rapoport, B. Smithling, and W. Zhang, Arithmetic diagonal cycles on unitary Shimura varieties, Compos. Math. 156 (2020), no. 9, 1745–1824. MR 4167594, DOI 10.1112/s0010437x20007289
- Michael Rapoport, Brian Smithling, and Wei Zhang, On Shimura varieties for unitary groups, Pure Appl. Math. Q., 17 (2021), no. 2, 773–837.
- M. Rapoport and Th. Zink, Period spaces for $p$-divisible groups, Annals of Mathematics Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996. MR 1393439, DOI 10.1515/9781400882601
- Michael Rapoport and Thomas Zink, On the Drinfeld moduli problem of $p$-divisible groups, Camb. J. Math. 5 (2017), no. 2, 229–279. MR 3653061, DOI 10.4310/CJM.2017.v5.n2.a2
- Siddarth Sankaran, Improper intersections of Kudla-Rapoport divisors and Eisenstein series, J. Inst. Math. Jussieu 16 (2017), no. 5, 899–945. MR 3709001, DOI 10.1017/S1474748015000109
- Carl Ludwig Siegel, Indefinite quadratische Formen und Funktionentheorie. I, Math. Ann. 124 (1951), 17–54 (German). MR 67930, DOI 10.1007/BF01343549
- John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 93–110. MR 225778
- J. T. Tate, $p$-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin-New York, 1967, pp. 158–183. MR 231827
- John Tate, Conjectures on algebraic cycles in $l$-adic cohomology, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 71–83. MR 1265523, DOI 10.1090/pspum/055.1/1265523
- Ulrich Terstiege, Intersections of arithmetic Hirzebruch-Zagier cycles, Math. Ann. 349 (2011), no. 1, 161–213. MR 2753800, DOI 10.1007/s00208-010-0520-8
- Ulrich Terstiege, Intersections of special cycles on the Shimura variety for $\rm GU(1,2)$, J. Reine Angew. Math. 684 (2013), 113–164. MR 3181558, DOI 10.1515/crelle-2011-0006
- Ulrich Terstiege, On the regularity of special difference divisors, C. R. Math. Acad. Sci. Paris 351 (2013), no. 3-4, 107–109 (English, with English and French summaries). MR 3037996, DOI 10.1016/j.crma.2013.02.001
- Inken Vollaard, The supersingular locus of the Shimura variety for $\textrm {GU}(1,s)$, Canad. J. Math. 62 (2010), no. 3, 668–720. MR 2666394, DOI 10.4153/CJM-2010-031-2
- Inken Vollaard and Torsten Wedhorn, The supersingular locus of the Shimura variety of $\textrm {GU}(1,n-1)$ II, Invent. Math. 184 (2011), no. 3, 591–627. MR 2800696, DOI 10.1007/s00222-010-0299-y
- André Weil, Sur la formule de Siegel dans la théorie des groupes classiques, Acta Math. 113 (1965), 1–87 (French). MR 223373, DOI 10.1007/BF02391774
- Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang, The Gross-Zagier formula on Shimura curves, Annals of Mathematics Studies, vol. 184, Princeton University Press, Princeton, NJ, 2013. MR 3237437
- Wei Zhang, Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups, Ann. of Math. (2) 180 (2014), no. 3, 971–1049. MR 3245011, DOI 10.4007/annals.2014.180.3.4
- W. Zhang, Weil representation and arithmetic fundamental lemma, Ann. of Math. (2) 193 (2021), no. 3, 863–978. MR 4250392, DOI 10.4007/annals.2021.193.3.5
Bibliographic Information
- Chao Li
- Affiliation: Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
- Email: chaoli@math.columbia.edu
- Wei Zhang
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- ORCID: 0000-0002-5706-9493
- Email: weizhang@mit.edu
- Received by editor(s): August 7, 2019
- Received by editor(s) in revised form: November 30, 2020, January 17, 2021, January 22, 2021, and May 22, 2021
- Published electronically: September 10, 2021
- Additional Notes: The first author was partially supported by an AMS travel grant for ICM 2018 and the NSF grant DMS-1802269. The second author was partially supported by the NSF grant DMS-1838118 and 1901642
- © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 35 (2022), 705-797
- MSC (2020): Primary 11G18; Secondary 14G35
- DOI: https://doi.org/10.1090/jams/988
- MathSciNet review: 4433078