Making cobordisms symplectic
HTML articles powered by AMS MathViewer
- by Yakov Eliashberg and Emmy Murphy;
- J. Amer. Math. Soc. 36 (2023), 1-29
- DOI: https://doi.org/10.1090/jams/995
- Published electronically: December 1, 2021
- HTML | PDF | Request permission
Abstract:
We establish an existence $h$-principle for symplectic cobordisms of dimension $2n>4$ with concave overtwisted contact boundary.References
- Mélanie Bertelson and Gael Meigniez, Conformal Symplectic structures, Foliations and Contact Structures, arXiv:2107.08839.
- Matthew Strom Borman, Yakov Eliashberg, and Emmy Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015), no. 2, 281–361. MR 3455235, DOI 10.1007/s11511-016-0134-4
- Roger Casals, Emmy Murphy, and Francisco Presas, Geometric criteria for overtwistedness, J. Amer. Math. Soc. 32 (2019), no. 2, 563–604. MR 3904160, DOI 10.1090/jams/917
- Kai Cieliebak and Yakov Eliashberg, From Stein to Weinstein and back, American Mathematical Society Colloquium Publications, vol. 59, American Mathematical Society, Providence, RI, 2012. Symplectic geometry of affine complex manifolds. MR 3012475, DOI 10.1090/coll/059
- James Conway and John B. Etnyre, Contact surgery and symplectic caps, Bull. Lond. Math. Soc. 52 (2020), no. 2, 379–394. MR 4171373, DOI 10.1112/blms.12332
- Y. Eliashberg, Classification of overtwisted contact structures on $3$-manifolds, Invent. Math. 98 (1989), no. 3, 623–637. MR 1022310, DOI 10.1007/BF01393840
- Yakov Eliashberg, Topological characterization of Stein manifolds of dimension $>2$, Internat. J. Math. 1 (1990), no. 1, 29–46. MR 1044658, DOI 10.1142/S0129167X90000034
- Yakov Eliashberg, Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 45–67. MR 1171908
- Yakov Eliashberg, Contact $3$-manifolds twenty years since J. Martinet’s work, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 165–192 (English, with French summary). MR 1162559, DOI 10.5802/aif.1288
- Yakov Eliashberg, Weinstein manifolds revisited, Modern geometry: a celebration of the work of Simon Donaldson, Proc. Sympos. Pure Math., vol. 99, Amer. Math. Soc., Providence, RI, 2018, pp. 59–82. MR 3838879, DOI 10.1090/pspum/099/01737
- Yakov Eliashberg, A few remarks about symplectic filling, Geom. Topol. 8 (2004), 277–293. MR 2023279, DOI 10.2140/gt.2004.8.277
- Yakov Eliashberg and Mikhael Gromov, Convex symplectic manifolds, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 135–162. MR 1128541, DOI 10.1090/pspum/052.2/1128541
- Yakov Eliashberg and Emmy Murphy, Lagrangian caps, Geom. Funct. Anal. 23 (2013), no. 5, 1483–1514. MR 3102911, DOI 10.1007/s00039-013-0239-2
- John B. Etnyre, On symplectic fillings, Algebr. Geom. Topol. 4 (2004), 73–80. MR 2023278, DOI 10.2140/agt.2004.4.73
- John B. Etnyre and Ko Honda, On symplectic cobordisms, Math. Ann. 323 (2002), no. 1, 31–39. MR 1906906, DOI 10.1007/s002080100292
- David T. Gay, Four-dimensional symplectic cobordisms containing three-handles, Geom. Topol. 10 (2006), 1749–1759. MR 2284049, DOI 10.2140/gt.2006.10.1749
- Hansjörg Geiges, Symplectic manifolds with disconnected boundary of contact type, Internat. Math. Res. Notices 1 (1994), 23–30. MR 1255250, DOI 10.1155/S1073792894000048
- John W. Gray, Some global properties of contact structures, Ann. of Math. (2) 69 (1959), 421–450. MR 112161, DOI 10.2307/1970192
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, DOI 10.1007/BF01388806
- Peter Kronheimer and Tomasz Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, vol. 10, Cambridge University Press, Cambridge, 2007. MR 2388043, DOI 10.1017/CBO9780511543111
- Oleg Lazarev, Maximal contact and symplectic structures, J. Topol. 13 (2020), no. 3, 1058–1083. MR 4100126, DOI 10.1112/topo.12149
- Dusa McDuff, Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991), no. 3, 651–671. MR 1091622, DOI 10.1007/BF01239530
- Patrick Massot, Klaus Niederkrüger, and Chris Wendl, Weak and strong fillability of higher dimensional contact manifolds, Invent. Math. 192 (2013), no. 2, 287–373. MR 3044125, DOI 10.1007/s00222-012-0412-5
- Dusa McDuff, Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991), no. 3, 651–671. MR 1091622, DOI 10.1007/BF01239530
- J. Milnor, On the cobordism ring $\Omega ^{\ast }$ and a complex analogue. I, Amer. J. Math. 82 (1960), 505–521. MR 119209, DOI 10.2307/2372970
- Yoshihiko Mitsumatsu, Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 5, 1407–1421 (English, with English and French summaries). MR 1370752, DOI 10.5802/aif.1500
- Tomasz Mrowka and Yann Rollin, Legendrian knots and monopoles, Algebr. Geom. Topol. 6 (2006), 1–69. MR 2199446, DOI 10.2140/agt.2006.6.1
- Emmy Murphy, Loose Legendrian Embeddings in High Dimensional Contact Manifolds, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–Stanford University. MR 4172336
- S. P. Novikov, Some problems in the topology of manifolds connected with the theory of Thom spaces, Dokl. Akad. Nauk SSSR 132, 1031–1034 (Russian); English transl., Soviet Math. Dokl. 1 (1960), 717–720. MR 121815
- Klaus Niederkrüger, The plastikstufe—a generalization of the overtwisted disk to higher dimensions, Algebr. Geom. Topol. 6 (2006), 2473–2508. MR 2286033, DOI 10.2140/agt.2006.6.2473
- Alan Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991), no. 2, 241–251. MR 1114405, DOI 10.14492/hokmj/1381413841
- Chris Wendl, Non-exact symplectic cobordisms between contact 3-manifolds, J. Differential Geom. 95 (2013), no. 1, 121–182. MR 3128981
- C. Wendl, https://symplecticfieldtheorist.wordpress.com/author/lmpshd/.
Bibliographic Information
- Yakov Eliashberg
- Affiliation: Department of Mathematics, Stanford University, 450 Jane Stanford Way, Building 380, Stanford, CA 94305-2125
- MR Author ID: 62865
- Email: eliash@stanford.edu
- Emmy Murphy
- Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208
- Address at time of publication: Department of Mathematics, Princeton University, Fine Hall, 304 Washington Rd, Princeton, NJ 08544
- Email: em7861@princeton.edu
- Received by editor(s): May 18, 2015
- Received by editor(s) in revised form: December 15, 2015, April 6, 2017, July 31, 2020, August 10, 2020, and September 10, 2021
- Published electronically: December 1, 2021
- Additional Notes: The first author was partially supported by the NSF grants DMS-1505910 and DMS-1807270. The second author was partially supported by the NSF grant DMS-1906564
- © Copyright 2021 American Mathematical Society
- Journal: J. Amer. Math. Soc. 36 (2023), 1-29
- MSC (2020): Primary 53D05, 53D10, 53D35
- DOI: https://doi.org/10.1090/jams/995
- MathSciNet review: 4495837