Endotrivial modules for finite groups via homotopy theory
HTML articles powered by AMS MathViewer
- by Jesper Grodal;
- J. Amer. Math. Soc. 36 (2023), 177-250
- DOI: https://doi.org/10.1090/jams/994
- Published electronically: April 21, 2022
- HTML | PDF | Request permission
Abstract:
Classifying endotrivial $kG$-modules, i.e., elements of the Picard group of the stable module category for an arbitrary finite group $G$, has been a long-running quest. By deep work of Dade, Alperin, Carlson, Thévenaz, and others, it has been reduced to understanding the subgroup consisting of modular representations that split as the trivial module $k$ direct sum a projective module when restricted to a Sylow $p$-subgroup. In this paper we identify this subgroup as the first cohomology group of the orbit category on non-trivial $p$-subgroups with values in the units $k^\times$, viewed as a constant coefficient system. We then use homotopical techniques to give a number of formulas for this group in terms of the abelianization of normalizers and centralizers in $G$, in particular verifying the Carlson–Thévenaz conjecture—this reduces the calculation of this group to algorithmic calculations in local group theory rather than representation theory. We also provide strong restrictions on when such representations of dimension greater than one can occur, in terms of the $p$-subgroup complex and $p$-fusion systems. We immediately recover and extend a large number of computational results in the literature, and further illustrate the computational potential by calculating the group in other sample new cases, e.g., for the Monster at all primes.References
- Michael Aschbacher, Radha Kessar, and Bob Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, vol. 391, Cambridge University Press, Cambridge, 2011. MR 2848834, DOI 10.1017/CBO9781139003841
- J. L. Alperin, Sylow intersections and fusion, J. Algebra 6 (1967), 222–241. MR 215913, DOI 10.1016/0021-8693(67)90005-1
- J. L. Alperin, Weights for finite groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 369–379. MR 933373, DOI 10.1090/pspum/047.1/933373
- J. L. Alperin, A construction of endo-permutation modules, J. Group Theory 4 (2001), no. 1, 3–10. MR 1808834, DOI 10.1515/jgth.2001.005
- Michael Aschbacher, Richard Lyons, Stephen D. Smith, and Ronald Solomon, The classification of finite simple groups, Mathematical Surveys and Monographs, vol. 172, American Mathematical Society, Providence, RI, 2011. Groups of characteristic 2 type. MR 2778190, DOI 10.1090/surv/172
- Kasper K. S. Andersen, Bob Oliver, and Joana Ventura, Reduced, tame and exotic fusion systems, Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 87–152. MR 2948790, DOI 10.1112/plms/pdr065
- Michael Aschbacher and Stephen D. Smith, On Quillen’s conjecture for the $p$-groups complex, Ann. of Math. (2) 137 (1993), no. 3, 473–529. MR 1217346, DOI 10.2307/2946530
- Michael Aschbacher, Finite groups with a proper $2$-generated core, Trans. Amer. Math. Soc. 197 (1974), 87–112. MR 364427, DOI 10.1090/S0002-9947-1974-0364427-8
- Michael Aschbacher, Simple connectivity of $p$-group complexes, Israel J. Math. 82 (1993), no. 1-3, 1–43. MR 1239044, DOI 10.1007/BF02808107
- M. Aschbacher, Finite group theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 2000. MR 1777008, DOI 10.1017/CBO9781139175319
- Michael Aschbacher, The generalized Fitting subsystem of a fusion system, Mem. Amer. Math. Soc. 209 (2011), no. 986, vi+110. MR 2752788, DOI 10.1090/S0065-9266-2010-00621-5
- Jianbei An and R. A. Wilson, The Alperin weight conjecture and Uno’s conjecture for the Monster $\Bbb M$, $p$ odd, LMS J. Comput. Math. 13 (2010), 320–356. MR 2685129, DOI 10.1112/S1461157009000059
- Paul Balmer, Modular representations of finite groups with trivial restriction to Sylow subgroups, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 6, 2061–2079. MR 3120735, DOI 10.4171/JEMS/414
- Paul Balmer, Endotrivial representations of finite groups and equivariant line bundles on the Brown complex, Geom. Topol. 22 (2018), no. 7, 4145–4161. MR 3890773, DOI 10.2140/gt.2018.22.4145
- Paul Balmer, David J. Benson, and Jon F. Carlson, Gluing representations via idempotent modules and constructing endotrivial modules, J. Pure Appl. Algebra 213 (2009), no. 2, 173–193. MR 2467395, DOI 10.1016/j.jpaa.2008.06.007
- C. Broto, N. Castellana, J. Grodal, R. Levi, and B. Oliver, Extensions of $p$-local finite groups, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3791–3858. MR 2302515, DOI 10.1090/S0002-9947-07-04225-0
- Helmut Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt, J. Algebra 17 (1971), 527–554 (German). MR 288172, DOI 10.1016/0021-8693(71)90008-1
- D. J. Benson. Representations and cohomology. I. Cambridge Univ. Press, 1991.
- D. J. Benson, Representations and cohomology. II, Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, Cambridge, 1991. Cohomology of groups and modules. MR 1156302
- T. Barthel, J. Grodal, and J. Hunt, Endotrivial modules for finite groups via higher algebra, In preparation.
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 365573, DOI 10.1007/978-3-540-38117-4
- Carles Broto, Ran Levi, and Bob Oliver, Homotopy equivalences of $p$-completed classifying spaces of finite groups, Invent. Math. 151 (2003), no. 3, 611–664. MR 1961340, DOI 10.1007/s00222-002-0264-5
- Carles Broto, Ran Levi, and Bob Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), no. 4, 779–856. MR 1992826, DOI 10.1090/S0894-0347-03-00434-X
- Serge Bouc, Homologie de certains ensembles ordonnés, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 2, 49–52 (French, with English summary). MR 756517
- S. Bouc, Homologie de certains ensembles de $2$-sous-groupes des groupes symétriques, J. Algebra 150 (1992), no. 1, 158–186 (French, with French summary). MR 1174893, DOI 10.1016/S0021-8693(05)80054-7
- Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 214062, DOI 10.1007/BFb0082690
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR 1324339
- R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, Preprint, Univ. Hannover, 1986, http://hdl.handle.net/1807/16682.
- Jon F. Carlson, A characterization of endotrivial modules over $p$-groups, Manuscripta Math. 97 (1998), no. 3, 303–307. MR 1654772, DOI 10.1007/s002290050102
- Jon F. Carlson, Endotrivial modules, Recent developments in Lie algebras, groups and representation theory, Proc. Sympos. Pure Math., vol. 86, Amer. Math. Soc., Providence, RI, 2012, pp. 99–111. MR 2976998, DOI 10.1090/pspum/086/1412
- Jon F. Carlson, Toward a classification of endotrivial modules, Finite simple groups: thirty years of the atlas and beyond, Contemp. Math., vol. 694, Amer. Math. Soc., Providence, RI, 2017, pp. 139–150. MR 3682595, DOI 10.1090/conm/694
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- Andrew Chermak, Fusion systems and localities, Acta Math. 211 (2013), no. 1, 47–139. MR 3118305, DOI 10.1007/s11511-013-0099-5
- Jon F. Carlson, David J. Hemmer, and Nadia Mazza, The group of endotrivial modules for the symmetric and alternating groups, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 1, 83–95. MR 2579680, DOI 10.1017/S0013091508000618
- Jon F. Carlson, Nadia Mazza, and Daniel K. Nakano, Endotrivial modules for finite groups of Lie type, J. Reine Angew. Math. 595 (2006), 93–119. MR 2244799, DOI 10.1515/CRELLE.2006.045
- Jon F. Carlson, Nadia Mazza, and Daniel K. Nakano, Endotrivial modules for the symmetric and alternating groups, Proc. Edinb. Math. Soc. (2) 52 (2009), no. 1, 45–66. MR 2475880, DOI 10.1017/S0013091506001179
- Jon F. Carlson, Nadia Mazza, and Daniel K. Nakano, Endotrivial modules for the general linear group in a nondefining characteristic, Math. Z. 278 (2014), no. 3-4, 901–925. MR 3278897, DOI 10.1007/s00209-014-1338-y
- Jon F. Carlson, Nadia Mazza, and Daniel K. Nakano, Endotrivial modules for finite groups of Lie type $A$ in nondefining characteristic, Math. Z. 282 (2016), no. 1-2, 1–24. MR 3448371, DOI 10.1007/s00209-015-1529-1
- Jon F. Carlson, Nadia Mazza, and Jacques Thévenaz, Endotrivial modules for $p$-solvable groups, Trans. Amer. Math. Soc. 363 (2011), no. 9, 4979–4996. MR 2806698, DOI 10.1090/S0002-9947-2011-05307-9
- Jon F. Carlson, Nadia Mazza, and Jacques Thévenaz, Endotrivial modules over groups with quaternion or semi-dihedral Sylow 2-subgroup, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 157–177. MR 2998832, DOI 10.4171/JEMS/358
- Jon F. Carlson, Nadia Mazza, and Jacques Thévenaz, Torsion-free endotrivial modules, J. Algebra 398 (2014), 413–433. MR 3123775, DOI 10.1016/j.jalgebra.2013.01.020
- Carles Casacuberta and Georg Peschke, Localizing with respect to self-maps of the circle, Trans. Amer. Math. Soc. 339 (1993), no. 1, 117–140. MR 1123451, DOI 10.1090/S0002-9947-1993-1123451-X
- David A. Craven, Trivial-source endotrivial modules for sporadic groups, Beitr. Algebra Geom. 62 (2021), no. 2, 317–343. MR 4254622, DOI 10.1007/s13366-020-00521-8
- Jon F. Carlson and Jacques Thévenaz, The classification of endo-trivial modules, Invent. Math. 158 (2004), no. 2, 389–411. MR 2096798, DOI 10.1007/s00222-004-0385-0
- Jon F. Carlson and Jacques Thévenaz, The classification of torsion endo-trivial modules, Ann. of Math. (2) 162 (2005), no. 2, 823–883. MR 2183283, DOI 10.4007/annals.2005.162.823
- Jon F. Carlson and Jacques Thévenaz, The torsion group of endotrivial modules, Algebra Number Theory 9 (2015), no. 3, 749–765. MR 3340550, DOI 10.2140/ant.2015.9.749
- Everett C. Dade, Endo-permutation modules over $p$-groups. I, Ann. of Math. (2) 107 (1978), no. 3, 459–494. MR 496843, DOI 10.2307/1971125
- Everett Dade, Endo-permutation modules over $p$-groups. II, Ann. of Math. (2) 108 (1978), no. 2, 317–346. MR 506990, DOI 10.2307/1971169
- Kaustuv Mukul Das, Simple connectivity of the Quillen complex of $\textrm {GL}_n(q)$, J. Algebra 178 (1995), no. 1, 239–263. MR 1358264, DOI 10.1006/jabr.1995.1347
- Kaustuv Mukul Das, Some results about the Quillen complex of $\textrm {Sp}_{2n}(q)$, J. Algebra 209 (1998), no. 2, 427–445. MR 1659907, DOI 10.1006/jabr.1998.7545
- Kaustuv Mukul Das, The Quillen complex of groups of symplectic type: the characteristic $2$ case, J. Algebra 223 (2000), no. 2, 556–561. MR 1735162, DOI 10.1006/jabr.1999.8098
- William G. Dwyer and Hans-Werner Henn, Homotopy theoretic methods in group cohomology, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2001. MR 1926776, DOI 10.1007/978-3-0348-8356-6
- W. G. Dwyer and D. M. Kan, Function complexes for diagrams of simplicial sets, Nederl. Akad. Wetensch. Indag. Math. 45 (1983), no. 2, 139–147. MR 705421, DOI 10.1016/1385-7258(83)90051-3
- W. G. Dwyer, Homology decompositions for classifying spaces of finite groups, Topology 36 (1997), no. 4, 783–804. MR 1432421, DOI 10.1016/S0040-9383(96)00031-6
- W. G. Dwyer, Sharp homology decompositions for classifying spaces of finite groups, Group representations: cohomology, group actions and topology (Seattle, WA, 1996) Proc. Sympos. Pure Math., vol. 63, Amer. Math. Soc., Providence, RI, 1998, pp. 197–220. MR 1603159, DOI 10.1090/pspum/063/1603159
- Leonard Evens, The cohomology of groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1144017
- Emmanuel Dror Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes in Mathematics, vol. 1622, Springer-Verlag, Berlin, 1996. MR 1392221, DOI 10.1007/BFb0094429
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612, DOI 10.1007/978-3-0348-8707-6
- D. Gorenstein, R. Lyons, and R. Solomon. The classification of the finite simple groups. No. 2. AMS, 1996.
- D. Gorenstein, R. Lyons, and R. Solomon. The classification of the finite simple groups. No. 3. AMS, 1998.
- David M. Goldschmidt, A conjugation family for finite groups, J. Algebra 16 (1970), 138–142. MR 260869, DOI 10.1016/0021-8693(70)90046-3
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 231903
- Jesper Grodal, Higher limits via subgroup complexes, Ann. of Math. (2) 155 (2002), no. 2, 405–457. MR 1906592, DOI 10.2307/3062122
- Jesper Grodal and Stephen D. Smith, Propagating sharp group homology decompositions, Adv. Math. 200 (2006), no. 2, 525–538. MR 2200855, DOI 10.1016/j.aim.2005.01.006
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 210125, DOI 10.1007/978-3-642-85844-4
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR 1944041, DOI 10.1090/surv/099
- Mark Hovey, John H. Palmieri, and Neil P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), no. 610, x+114. MR 1388895, DOI 10.1090/memo/0610
- G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110–134. MR 52438, DOI 10.1090/S0002-9947-1953-0052438-8
- P. J. Hilton and U. Stammbach, A course in homological algebra, 2nd ed., Graduate Texts in Mathematics, vol. 4, Springer-Verlag, New York, 1997. MR 1438546, DOI 10.1007/978-1-4419-8566-8
- D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2244106, DOI 10.1093/acprof:oso/9780199296866.001.0001
- Stefan Jackowski and James McClure, Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology 31 (1992), no. 1, 113–132. MR 1153240, DOI 10.1016/0040-9383(92)90065-P
- Martin Wedel Jacobsen and Jesper M. Møller, Euler characteristics and Möbius algebras of $p$-subgroup categories, J. Pure Appl. Algebra 216 (2012), no. 12, 2665–2696. MR 2943749, DOI 10.1016/j.jpaa.2012.03.032
- Moritz C. Kerz, The complex of words and Nakaoka stability, Homology Homotopy Appl. 7 (2005), no. 1, 77–85. MR 2155519, DOI 10.4310/HHA.2005.v7.n1.a5
- Rached Ksontini, Simple connectivity of the Quillen complex of the symmetric group, J. Combin. Theory Ser. A 103 (2003), no. 2, 257–279. MR 1996066, DOI 10.1016/S0097-3165(03)00073-6
- Rached Ksontini, The fundamental group of the Quillen complex of the symmetric group, J. Algebra 282 (2004), no. 1, 33–57. MR 2095571, DOI 10.1016/j.jalgebra.2004.07.025
- Markus Linckelmann, Fusion category algebras, J. Algebra 277 (2004), no. 1, 222–235. MR 2059628, DOI 10.1016/j.jalgebra.2003.12.010
- Markus Linckelmann, Alperin’s weight conjecture in terms of equivariant Bredon cohomology, Math. Z. 250 (2005), no. 3, 495–513. MR 2179608, DOI 10.1007/s00209-004-0753-x
- Markus Linckelmann, On $H^\ast ({\scr C};k^\times )$ for fusion systems, Homology Homotopy Appl. 11 (2009), no. 1, 203–218. MR 2506133
- Caroline Lassueur and Nadia Mazza, Endotrivial modules for the Schur covers of the symmetric and alternating groups, Algebr. Represent. Theory 18 (2015), no. 5, 1321–1335. MR 3422472, DOI 10.1007/s10468-015-9542-y
- Caroline Lassueur and Nadia Mazza, Endotrivial modules for the sporadic simple groups and their covers, J. Pure Appl. Algebra 219 (2015), no. 9, 4203–4228. MR 3336004, DOI 10.1016/j.jpaa.2015.02.014
- Caroline Lassueur and Jacques Thévenaz, Endotrivial modules: a reduction to $p’$-central extensions, Pacific J. Math. 287 (2017), no. 2, 423–438. MR 3632895, DOI 10.2140/pjm.2017.287.423
- J. Lurie, Higher algebra, https://www.math.ias.edu/~lurie/papers/HA.pdf, September 2017.
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 354798
- Akhil Mathew, The Galois group of a stable homotopy theory, Adv. Math. 291 (2016), 403–541. MR 3459022, DOI 10.1016/j.aim.2015.12.017
- Masahiko Miyamoto, On conjugation families, Hokkaido Math. J. 6 (1977), no. 1, 46–51. MR 442086, DOI 10.14492/hokmj/1381758562
- Nadia Mazza and Jacques Thévenaz, Endotrivial modules in the cyclic case, Arch. Math. (Basel) 89 (2007), no. 6, 497–503. MR 2371685, DOI 10.1007/s00013-007-2365-2
- Gabriel Navarro and Geoffrey R. Robinson, On endo-trivial modules for $p$-solvable groups, Math. Z. 270 (2012), no. 3-4, 983–987. MR 2892933, DOI 10.1007/s00209-010-0835-x
- Bob Oliver and Joana Ventura, Extensions of linking systems with $p$-group kernel, Math. Ann. 338 (2007), no. 4, 983–1043. MR 2317758, DOI 10.1007/s00208-007-0104-4
- A. Poulton, Almost split sequences for Knorr lattices, arXiv:1312.4475v5, 2014.
- Luis Puig, Structure locale dans les groupes finis, Bull. Soc. Math. France Suppl. Mém. 47 (1976), 132 (French). MR 450410
- Lluis Puig, Frobenius categories, J. Algebra 303 (2006), no. 1, 309–357. MR 2253665, DOI 10.1016/j.jalgebra.2006.01.023
- Jürgen Pulkus and Volkmar Welker, On the homotopy type of the $p$-subgroup complex for finite solvable groups, J. Austral. Math. Soc. Ser. A 69 (2000), no. 2, 212–228. MR 1775179, DOI 10.1017/S1446788700002184
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin-New York, 1973, pp. 85–147. MR 338129
- Daniel Quillen, Homotopy properties of the poset of nontrivial $p$-subgroups of a group, Adv. in Math. 28 (1978), no. 2, 101–128. MR 493916, DOI 10.1016/0001-8708(78)90058-0
- Jeremy Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), no. 3, 303–317. MR 1027750, DOI 10.1016/0022-4049(89)90081-9
- Jeremy Rickard, Idempotent modules in the stable category, J. London Math. Soc. (2) 56 (1997), no. 1, 149–170. MR 1462832, DOI 10.1112/S0024610797005309
- Albert Ruiz, Exotic normal fusion subsystems of general linear groups, J. Lond. Math. Soc. (2) 76 (2007), no. 1, 181–196. MR 2351616, DOI 10.1112/jlms/jdm051
- Albert Ruiz and Antonio Viruel, The classification of $p$-local finite groups over the extraspecial group of order $p^3$ and exponent $p$, Math. Z. 248 (2004), no. 1, 45–65. MR 2092721, DOI 10.1007/s00209-004-0652-1
- Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. MR 232393, DOI 10.1007/BF02684591
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
- John Shareshian, Hypergraph matching complexes and Quillen complexes of symmetric groups, J. Combin. Theory Ser. A 106 (2004), no. 2, 299–314. MR 2059000, DOI 10.1016/j.jcta.2004.03.002
- Jolanta Słomińska, Homotopy colimits on E-I-categories, Algebraic topology Poznań 1989, Lecture Notes in Math., vol. 1474, Springer, Berlin, 1991, pp. 273–294. MR 1133907, DOI 10.1007/BFb0084752
- Stephen D. Smith, Subgroup complexes, Mathematical Surveys and Monographs, vol. 179, American Mathematical Society, Providence, RI, 2011. MR 2850680, DOI 10.1090/surv/179
- Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, RI, 1968. MR 230728
- John Shareshian and Michelle L. Wachs, Top homology of hypergraph matching complexes, $p$-cycle complexes and Quillen complexes of symmetric groups, J. Algebra 322 (2009), no. 7, 2253–2271. MR 2553198, DOI 10.1016/j.jalgebra.2008.11.042
- Peter Symonds, The orbit space of the $p$-subgroup complex is contractible, Comment. Math. Helv. 73 (1998), no. 3, 400–405. MR 1633359, DOI 10.1007/s000140050061
- Peter Symonds, A relative version of Webb’s theorem on the equivariant chain complex of a subgroup complex, J. Pure Appl. Algebra 212 (2008), no. 8, 1984–1986. MR 2414698, DOI 10.1016/j.jpaa.2007.12.009
- Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR 889050, DOI 10.1515/9783110858372.312
- Tammo tom Dieck, Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2456045, DOI 10.4171/048
- Jacques Thévenaz, Endo-permutation modules, a guided tour, Group representation theory, EPFL Press, Lausanne, 2007, pp. 115–147. MR 2336639
- R. W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 91–109. MR 510404, DOI 10.1017/S0305004100055535
- R. W. Thomason, Cat as a closed model category, Cahiers Topologie Géom. Différentielle 21 (1980), no. 3, 305–324. MR 591388
- P. J. Webb, Subgroup complexes, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 349–365. MR 933372, DOI 10.1090/pspum/047.1/933372
- P. J. Webb, A split exact sequence of Mackey functors, Comment. Math. Helv. 66 (1991), no. 1, 34–69. MR 1090164, DOI 10.1007/BF02566635
- Peter Webb, An introduction to the representations and cohomology of categories, Group representation theory, EPFL Press, Lausanne, 2007, pp. 149–173. MR 2336640
- Louis Weisner, On the Sylow Subgroups of the Symmetric and Alternating Groups, Amer. J. Math. 47 (1925), no. 2, 121–124. MR 1506549, DOI 10.2307/2370639
- Wayne W. Wheeler, Local subgroups and the stable category, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2187–2205. MR 1885649, DOI 10.1090/S0002-9947-02-02964-1
- Robert A. Wilson, The odd-local subgroups of the Monster, J. Austral. Math. Soc. Ser. A 44 (1988), no. 1, 1–16. MR 914399, DOI 10.1017/S1446788700031323
- David L. Winter, The automorphism group of an extraspecial $p$-group, Rocky Mountain J. Math. 2 (1972), no. 2, 159–168. MR 297859, DOI 10.1216/RMJ-1972-2-2-159
- Satoshi Yoshiara, Odd radical subgroups of some sporadic simple groups, J. Algebra 291 (2005), no. 1, 90–107. MR 2158512, DOI 10.1016/j.jalgebra.2005.05.035
Bibliographic Information
- Jesper Grodal
- Affiliation: Department of Mathematical Sciences, University of Copenhagen, Denmark
- MR Author ID: 634219
- ORCID: 0000-0002-2901-8525
- Email: jg@math.ku.dk
- Received by editor(s): February 1, 2019
- Received by editor(s) in revised form: February 24, 2020, June 24, 2020, June 25, 2020, July 16, 2021, July 20, 2021, and July 22, 2021
- Published electronically: April 21, 2022
- Additional Notes: This work was supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92 and DNRF151). The author enjoyed the hospitality of MSRI Berkeley, Spring 2018 (NSF grant DMS-1440140) and the Isaac Newton Institute, Cambridge, Fall 2018 (EPSRC grants EP/K032208/1 and EP/R014604/1) where the manuscript was revised
- © Copyright 2022 American Mathematical Society
- Journal: J. Amer. Math. Soc. 36 (2023), 177-250
- MSC (2020): Primary 20C20; Secondary 20J05, 55P91
- DOI: https://doi.org/10.1090/jams/994
- MathSciNet review: 4495841