Lyapunov unstable elliptic equilibria
HTML articles powered by AMS MathViewer
- by Bassam Fayad;
- J. Amer. Math. Soc. 36 (2023), 81-106
- DOI: https://doi.org/10.1090/jams/997
- Published electronically: January 27, 2022
- HTML | PDF | Request permission
Abstract:
A new diffusion mechanism from the neighborhood of elliptic equilibria for Hamiltonian flows in three or more degrees of freedom is introduced. We thus obtain explicit real entire Hamiltonians on $\mathbb {R}^{2d}$, $d\geq 4$, that have a Lyapunov unstable elliptic equilibrium with an arbitrary chosen frequency vector whose coordinates are not all of the same sign. For non-resonant frequency vectors, our examples all have divergent Birkhoff normal form at the equilibrium.
On $\mathbb {R}^4$, we give explicit examples of real entire Hamiltonians having an equilibrium with an arbitrary chosen non-resonant frequency vector and a divergent Birkhoff normal form.
References
- D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obšč. 23 (1970), 3–36 (Russian). MR 370662
- V. I. Arnol′d, Mathematical problems in classical physics, Trends and perspectives in applied mathematics, Appl. Math. Sci., vol. 100, Springer, New York, 1994, pp. 1–20. MR 1277190, DOI 10.1007/978-1-4612-0859-4_{1}
- George D. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, RI, 1966. With an addendum by Jurgen Moser. MR 209095
- A. Bounemoura, B. Fayad, and L. Niederman, Double exponential stability for generic real-analytic elliptic equilibrium points, arXiv:1509.00285.
- T. M. Cherry, On periodic solutions of Hamiltonian systems of differential equations, Philos. Trans. Roy. Soc. A 227 (1926), 137–221.
- Raphaël Douady, Stabilité ou instabilité des points fixes elliptiques, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 1, 1–46 (French). MR 944100, DOI 10.24033/asens.1549
- L. H. Eliasson, Hamiltonian systems with linear normal form near an invariant torus, Nonlinear dynamics (Bologna, 1988) World Sci. Publ., Teaneck, NJ, 1989, pp. 11–29. MR 1115677
- L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case, Comment. Math. Helv. 65 (1990), no. 1, 4–35. MR 1036125, DOI 10.1007/BF02566590
- L. H. Eliasson, B. Fayad, and R. Krikorian, Around the stability of KAM tori, Duke Math. J. 164 (2015), no. 9, 1733–1775. MR 3357183, DOI 10.1215/00127094-3120060
- L. Hakan Eliasson, Bassam Fayad, and Raphaël Krikorian, KAM-tori near an analytic elliptic fixed point, Regul. Chaotic Dyn. 18 (2013), no. 6, 801–831. MR 3146593, DOI 10.1134/S1560354713060154
- G. Farré and B. Fayad, Instabilities for analytic quasi-periodic invariant tori, J. Eur. Math. Soc. (JEMS), arXiv:1912.01575, 2021.
- Bassam Fayad, Jean-Pierre Marco, and David Sauzin, Attracted by an elliptic fixed point, Astérisque 416 (2020), 321–340 (English, with English and French summaries). Some aspects of the theory of dynamical systems: a tribute to Jean-Christophe Yoccoz. Vol. II. MR 4247425, DOI 10.24033/ast.1118
- Bassam Fayad and Maria Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 3, 339–364 (English, with English and French summaries). MR 2166337, DOI 10.1016/j.ansens.2005.03.004
- Bassam Fayad and Maria Saprykina, Isolated elliptic fixed points for smooth Hamiltonians, Modern theory of dynamical systems, Contemp. Math., vol. 692, Amer. Math. Soc., Providence, RI, 2017, pp. 67–82. MR 3666067, DOI 10.1090/conm/692
- Xianghong Gong, Existence of divergent Birkhoff normal forms of Hamiltonian functions, Illinois J. Math. 56 (2012), no. 1, 85–94 (2013). MR 3117019
- Michael Herman, Some open problems in dynamical systems, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 797–808. MR 1648127
- R. Krikorian, On the divergence of Birkhoff normal forms, arXiv:1906.01096, 2019.
- Vadim Kaloshin and Ke Zhang, Arnold diffusion for smooth systems of two and a half degrees of freedom, Annals of Mathematics Studies, vol. 208, Princeton University Press, Princeton, NJ, 2020. MR 4298716
- Vadim Kaloshin, John N. Mather, and Enrico Valdinoci, Instability of resonant totally elliptic points of symplectic maps in dimension 4, Astérisque 297 (2004), 79–116 (English, with English and French summaries). Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. II. MR 2135676
- T. Levi-Civita, Sopra alcuni criteri di instabilità, Ann. Mat. 5 (1901), 221–308.
- Jean-Pierre Marco and David Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci. 96 (2002), 199–275 (2003). MR 1986314, DOI 10.1007/s10240-003-0011-5
- Alessandro Morbidelli and Antonio Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys. 78 (1995), no. 5-6, 1607–1617. MR 1316113, DOI 10.1007/BF02180145
- Ricardo Pérez-Marco, Fixed points and circle maps, Acta Math. 179 (1997), no. 2, 243–294. MR 1607557, DOI 10.1007/BF02392745
- Ricardo Pérez-Marco, Convergence or generic divergence of the Birkhoff normal form, Ann. of Math. (2) 157 (2003), no. 2, 557–574. MR 1973055, DOI 10.4007/annals.2003.157.557
- H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn. 6 (2001), no. 2, 119–204. MR 1843664, DOI 10.1070/RD2001v006n02ABEH000169
- C. L. Siegel and J. K. Moser, Lectures on celestial mechanics, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Translated from the German by C. I. Kalme; Reprint of the 1971 translation. MR 1345153
- Carl Ludwig Siegel, Über die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann. 128 (1954), 144–170 (German). MR 67298, DOI 10.1007/BF01360131
Bibliographic Information
- Bassam Fayad
- Affiliation: Institut de Mathématiques de Jussieu–Paris Rive Gauche (IMJ-PRG), French National Centre for Scientific Research (CNRS), 58-56, Avenue de France, Paris, France
- MR Author ID: 675142
- Received by editor(s): July 2, 2020
- Received by editor(s) in revised form: May 20, 2021, September 1, 2021, and October 18, 2021
- Published electronically: January 27, 2022
- © Copyright 2022 American Mathematical Society
- Journal: J. Amer. Math. Soc. 36 (2023), 81-106
- MSC (2020): Primary 37J06, 37J11, 37J12, 37J25, 37J30
- DOI: https://doi.org/10.1090/jams/997
- MathSciNet review: 4495839