Integral models for spaces via the higher Frobenius
HTML articles powered by AMS MathViewer
- by Allen Yuan;
- J. Amer. Math. Soc. 36 (2023), 107-175
- DOI: https://doi.org/10.1090/jams/998
- Published electronically: February 14, 2022
- HTML | PDF
Abstract:
We give a fully faithful integral model for simply connected finite complexes in terms of $\mathbb {E}_{\infty }$-ring spectra and the Nikolaus–Scholze Frobenius. The key technical input is the development of a homotopy coherent Frobenius action on a certain subcategory of $p$-complete $\mathbb {E}_{\infty }$-rings for each prime $p$. Using this, we show that the data of a simply connected finite complex $X$ is the data of its Spanier-Whitehead dual, as an $\mathbb {E}_{\infty }$-ring, together with a trivialization of the Frobenius action after completion at each prime.
In producing the above Frobenius action, we explore two ideas which may be of independent interest. The first is a more general action of Frobenius in equivariant homotopy theory; we show that a version of Quillen’s $Q$-construction acts on the $\infty$-category of $\mathbb {E}_{\infty }$-rings with “genuine equivariant multiplication,” which we call global algebras. The second is a “pre-group-completed” variant of algebraic $K$-theory which we call partial $K$-theory. We develop the notion of partial $K$-theory and give a computation of the partial $K$-theory of $\mathbb {F}_p$ up to $p$-completion.
References
- J. F. Adams, J. H. Gunawardena, and H. Miller, The Segal conjecture for elementary abelian $p$-groups, Topology 24 (1985), no. 4, 435–460. MR 816524, DOI 10.1016/0040-9383(85)90014-X
- D. Ayala, A. Mazel-Gee, and N. Rozenblyum, A naive approach to genuine G-spectra and cyclotomic spectra, Preprint, arXiv:1710.06416, 2017.
- David Ayala and John Francis, Flagged higher categories, Topology and quantum theory in interaction, Contemp. Math., vol. 718, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 137–173. MR 3869643, DOI 10.1090/conm/718/14489
- Tom Bachmann and Marc Hoyois, Norms in motivic homotopy theory, Astérisque 425 (2021), ix+207 (English, with English and French summaries). MR 4288071, DOI 10.24033/ast
- Clark Barwick, On the Q-construction for exact quasicategories, Preprint, arXiv:1301.4725, 2013.
- Clark Barwick, On exact $\infty$-categories and the theorem of the heart, Compos. Math. 151 (2015), no. 11, 2160–2186. MR 3427577, DOI 10.1112/S0010437X15007447
- Clark Barwick, On the algebraic $K$-theory of higher categories, J. Topol. 9 (2016), no. 1, 245–347. MR 3465850, DOI 10.1112/jtopol/jtv042
- Clark Barwick, Spectral Mackey functors and equivariant algebraic $K$-theory (I), Adv. Math. 304 (2017), 646–727. MR 3558219, DOI 10.1016/j.aim.2016.08.043
- Clark Barwick, Saul Glasman, and Jay Shah, Spectral Mackey functors and equivariant algebraic $K$-theory, II, Tunis. J. Math. 2 (2020), no. 1, 97–146. MR 3933393, DOI 10.2140/tunis.2020.2.97
- Mark Behrens and Charles Rezk, The Bousfield-Kuhn functor and topological André-Quillen cohomology, Invent. Math. 220 (2020), no. 3, 949–1022. MR 4094969, DOI 10.1007/s00222-019-00941-x
- Victor Belfi and Clarence Wilkerson, Some examples in the theory of $P$-completions, Indiana Univ. Math. J. 25 (1976), no. 6, 565–576. MR 418086, DOI 10.1512/iumj.1976.25.25045
- A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133–150. MR 380779, DOI 10.1016/0040-9383(75)90023-3
- A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281. MR 551009, DOI 10.1016/0040-9383(79)90018-1
- Lukas Brantner, Ricardo Campos, and Joost Nuiten, PD operads and explicit partition Lie algebras, Preprint, arXiv:2104.03870, 2021.
- S. R. Bullett and I. G. Macdonald, On the Adem relations, Topology 21 (1982), no. 3, 329–332. MR 649764, DOI 10.1016/0040-9383(82)90015-5
- Gunnar Carlsson, Equivariant stable homotopy and Segal’s Burnside ring conjecture, Ann. of Math. (2) 120 (1984), no. 2, 189–224. MR 763905, DOI 10.2307/2006940
- David Gepner, Rune Haugseng, and Thomas Nikolaus, Lax colimits and free fibrations in $\infty$-categories, Doc. Math. 22 (2017), 1225–1266. MR 3690268
- Saul Glasman, A spectrum-level Hodge filtration on topological Hochschild homology, Selecta Math. (N.S.) 22 (2016), no. 3, 1583–1612. MR 3518559, DOI 10.1007/s00029-016-0228-z
- Paul G. Goerss, Simplicial chains over a field and $p$-local homotopy theory, Math. Z. 220 (1995), no. 4, 523–544. MR 1363853, DOI 10.1007/BF02572629
- J. H. C. Gunawardena, Segal’s conjecture for cyclic groups of odd prime order, J.T. Knight Prize Essay, Cambridge, 1980.
- Gijsbert Heuts, Goodwillie approximations to higher categories, ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)–Harvard University. MR 3450458
- Gijs Heuts, Lie algebras and $v_n$-periodic spaces, Ann. of Math. (2) 193 (2021), no. 1, 223–301. MR 4199731, DOI 10.4007/annals.2021.193.1.3
- M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. (2) 184 (2016), no. 1, 1–262. MR 3505179, DOI 10.4007/annals.2016.184.1.1
- Vladimir Hinich, Dwyer-Kan localization revisited, Homology Homotopy Appl. 18 (2016), no. 1, 27–48. MR 3460765, DOI 10.4310/HHA.2016.v18.n1.a3
- J. E. Humphreys, The Steinberg representation, Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 2, 247–263. MR 876960, DOI 10.1090/S0273-0979-1987-15512-1
- André Joyal and Myles Tierney, Quasi-categories vs Segal spaces, Categories in algebra, geometry and mathematical physics, Contemp. Math., vol. 431, Amer. Math. Soc., Providence, RI, 2007, pp. 277–326. MR 2342834, DOI 10.1090/conm/431/08278
- John R. Klein, Moduli of suspension spectra, Trans. Amer. Math. Soc. 357 (2005), no. 2, 489–507. MR 2095620, DOI 10.1090/S0002-9947-04-03474-9
- Igor Kříž, $p$-adic homotopy theory, Topology Appl. 52 (1993), no. 3, 279–308. MR 1243609, DOI 10.1016/0166-8641(93)90108-P
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- Wen Hsiung Lin, On conjectures of Mahowald, Segal and Sullivan, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 3, 449–458. MR 556925, DOI 10.1017/S0305004100056887
- Jacob Lurie, $(\infty ,2)$-categories and the Goodwillie calculus I, Available at http://www.math.harvard.edu/~lurie/, 2009.
- Jacob Lurie, Derived algebraic geometry XIII: Rational and $p$-adic homotopy theory, Available at http://www.math.harvard.edu/~lurie/, 2011.
- Jacob Lurie, Higher algebra, Available at http://www.math.harvard.edu/~lurie/, 2016.
- Jacob Lurie, Higher topos theory, Available at http://www.math.harvard.edu/~lurie/, 2017.
- Jacob Lurie, Elliptic cohomology II: orientations, Available at http://www.math.harvard.edu/~lurie/, 2018.
- Michael A. Mandell, $E_\infty$ algebras and $p$-adic homotopy theory, Topology 40 (2001), no. 1, 43–94. MR 1791268, DOI 10.1016/S0040-9383(99)00053-1
- Michael A. Mandell, Cochains and homotopy type, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 213–246. MR 2233853, DOI 10.1007/s10240-006-0037-6
- Akhil Mathew, Niko Naumann, and Justin Noel, Nilpotence and descent in equivariant stable homotopy theory, Adv. Math. 305 (2017), 994–1084. MR 3570153, DOI 10.1016/j.aim.2016.09.027
- J. P. May, Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, vol. 91, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. With contributions by M. Cole, G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner. MR 1413302, DOI 10.1090/cbms/091
- J. P. May and J. E. McClure, A reduction of the Segal conjecture, Current trends in algebraic topology, Part 2 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 1982, pp. 209–222. MR 686147
- J. Peter May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970) Lecture Notes in Math., Vol. 168, Springer, Berlin-New York, 1970, pp. 153–231. MR 281196
- Thomas Nikolaus and Peter Scholze, On topological cyclic homology, Acta Math. 221 (2018), no. 2, 203–409. MR 3904731, DOI 10.4310/ACTA.2018.v221.n2.a1
- J. D. Quigley and Jay Shah, On the parametrized Tate construction and two theories of real $p$-cyclotomic spectra, Preprint, arXiv:1909.03920, 2019.
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 315016, DOI 10.2307/1970825
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin-New York, 1973, pp. 85–147. MR 338129
- Charles Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001), no. 3, 973–1007. MR 1804411, DOI 10.1090/S0002-9947-00-02653-2
- Stefan Schwede, Global homotopy theory, New Mathematical Monographs, vol. 34, Cambridge University Press, Cambridge, 2018. MR 3838307, DOI 10.1017/9781108349161
- Graeme Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973), 213–221. MR 331377, DOI 10.1007/BF01390197
- Louis Solomon, The Steinberg character of a finite group with $BN$-pair, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968) W. A. Benjamin, Inc., New York-Amsterdam, 1969, pp. 213–221. MR 246951
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078, DOI 10.1007/BF02684341
- Dennis P. Sullivan, Geometric topology: localization, periodicity and Galois symmetry, $K$-Monographs in Mathematics, vol. 8, Springer, Dordrecht, 2005. The 1970 MIT notes; Edited and with a preface by Andrew Ranicki. MR 2162361, DOI 10.1007/1-4020-3512-8
- Friedhelm Waldhausen, Algebraic $K$-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318–419. MR 802796, DOI 10.1007/BFb0074449
- Dylan Wilson, Mod 2 power operations revisited, Preprint, arXiv:1905.00054, 2019.
- Allen Yuan, The Frobenius for $\mathbb {E}_{\infty }$-coalgebras, In preparation.
Bibliographic Information
- Allen Yuan
- Affiliation: Department of Mathematics, Columbia University. 2990 Broadway, New York, New York 10027
- MR Author ID: 964228
- Received by editor(s): October 9, 2019
- Received by editor(s) in revised form: September 23, 2021
- Published electronically: February 14, 2022
- Additional Notes: The author was supported by the NSF under Grant DGE-1122374
- © Copyright 2022 by the author
- Journal: J. Amer. Math. Soc. 36 (2023), 107-175
- MSC (2020): Primary 55P43, 55P15; Secondary 55P91, 19D06
- DOI: https://doi.org/10.1090/jams/998
- MathSciNet review: 4495840