Convergence of exclusion processes and the KPZ equation to the KPZ fixed point
HTML articles powered by AMS MathViewer
- by Jeremy Quastel and Sourav Sarkar;
- J. Amer. Math. Soc. 36 (2023), 251-289
- DOI: https://doi.org/10.1090/jams/999
- Published electronically: March 8, 2022
- HTML | PDF | Request permission
Abstract:
We show that under the 1:2:3 scaling, critically probing large space and time, the height function of finite range asymmetric exclusion processes and the Kardar-Parisi-Zhang (KPZ) equation converge to the KPZ fixed point, constructed earlier as a limit of the totally asymmetric simple exclusion process through exact formulas. Consequently, based on recent results of Wu [Tightness and local fluctuation estimates for the KPZ line ensemble, 2021], Dimitrov and Matetski [Ann. Probab. 49 (2021), pp. 2477–2529], the KPZ line ensemble converges to the Airy line ensemble.
For the KPZ equation we are able to start from a continuous function plus a finite collection of narrow wedges. For nearest neighbour exclusions, we can take (discretizations) of continuous functions with $|h(x)|\le C(1+\sqrt {|x|})$ for some $C>0$, or one narrow wedge. For non-nearest neighbour exclusions, we are restricted at the present time to a class of (random) initial data, dense in continuous functions in the topology of uniform convergence on compacts.
The method is by comparison of the transition probabilities of finite range exclusion processes and the totally asymmetric simple exclusion processes using energy estimates.
References
- Gideon Amir, Ivan Corwin, and Jeremy Quastel, Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions, Comm. Pure Appl. Math. 64 (2011), no. 4, 466–537. MR 2796514, DOI 10.1002/cpa.20347
- L. Bertini, C. Landim, and S. Olla, Derivation of Cahn-Hilliard equations from Ginzburg-Landau models, J. Statist. Phys. 88 (1997), no. 1-2, 365–381. MR 1468389, DOI 10.1007/BF02508476
- Lorenzo Bertini and Giambattista Giacomin, Stochastic Burgers and KPZ equations from particle systems, Comm. Math. Phys. 183 (1997), no. 3, 571–607. MR 1462228, DOI 10.1007/s002200050044
- Alexei Borodin, Ivan Corwin, Patrik Ferrari, and Bálint Vető, Height fluctuations for the stationary KPZ equation, Math. Phys. Anal. Geom. 18 (2015), no. 1, Art. 20, 95. MR 3366125, DOI 10.1007/s11040-015-9189-2
- Pasquale Calabrese and Pierre Le Doussal, Interaction quench in a Lieb-Liniger model and the KPZ equation with flat initial conditions, J. Stat. Mech. Theory Exp. 5 (2014), P05004, 19. MR 3224219, DOI 10.1088/1742-5468/2014/05/p05004
- Ivan Corwin and Evgeni Dimitrov, Transversal fluctuations of the ASEP, stochastic six vertex model, and Hall-Littlewood Gibbsian line ensembles, Comm. Math. Phys. 363 (2018), no. 2, 435–501. MR 3851820, DOI 10.1007/s00220-018-3139-3
- Ivan Corwin and Alan Hammond, Brownian Gibbs property for Airy line ensembles, Invent. Math. 195 (2014), no. 2, 441–508. MR 3152753, DOI 10.1007/s00222-013-0462-3
- Ivan Corwin and Alan Hammond, KPZ line ensemble, Probab. Theory Related Fields 166 (2016), no. 1-2, 67–185. MR 3547737, DOI 10.1007/s00440-015-0651-7
- Ivan Corwin and Jeremy Quastel, Crossover distributions at the edge of the rarefaction fan, Ann. Probab. 41 (2013), no. 3A, 1243–1314. MR 3098678, DOI 10.1214/11-AOP725
- D. Dauvergne, J. Ortmann, and B. Virág, The directed landscape, arXiv:1812.00309 (2018).
- Evgeni Dimitrov and Konstantin Matetski, Characterization of Brownian Gibbsian line ensembles, Ann. Probab. 49 (2021), no. 5, 2477–2529. MR 4317710, DOI 10.1214/21-aop1513
- Victor Dotsenko, Distribution function of the endpoint fluctuations of one-dimensional directed polymers in a random potential, J. Stat. Mech. Theory Exp. 2 (2013), P02012, 20. MR 3041935, DOI 10.1088/1742-5468/2013/02/p02012
- D. Forster, David R. Nelson, and Michael J. Stephen, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A (3) 16 (1977), no. 2, 732–749. MR 459274, DOI 10.1103/PhysRevA.16.732
- Massimiliano Gubinelli and Nicolas Perkowski, KPZ reloaded, Comm. Math. Phys. 349 (2017), no. 1, 165–269. MR 3592748, DOI 10.1007/s00220-016-2788-3
- M. Hairer, Solving the KPZ equation, XVIIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2014, pp. 419. MR 3204494
- Joseph Helfer and Daniel T. Wise, A note on maxima in random walks, Electron. J. Combin. 23 (2016), no. 1, Paper 1.17, 10. MR 3484722, DOI 10.37236/5330
- T. Imamura and T. Sasamoto, Fluctuations of the one-dimensional polynuclear growth model with external sources, Nuclear Phys. B 699 (2004), no. 3, 503–544. MR 2098552, DOI 10.1016/j.nuclphysb.2004.07.030
- Takashi Imamura and Tomohiro Sasamoto, Replica approach to the KPZ equation with the half Brownian motion initial condition, J. Phys. A 44 (2011), no. 38, 385001, 29. MR 2835150, DOI 10.1088/1751-8113/44/38/385001
- M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889–892.
- Konstantin Matetski, Jeremy Quastel, and Daniel Remenik, The KPZ fixed point, Acta Math. 227 (2021), no. 1, 115–203. MR 4346267, DOI 10.4310/acta.2021.v227.n1.a3
- Mihai Nica, Jeremy Quastel, and Daniel Remenik, One-sided reflected Brownian motions and the KPZ fixed point, Forum Math. Sigma 8 (2020), Paper No. e63, 16. MR 4190063, DOI 10.1017/fms.2020.56
- Janosch Ortmann, Jeremy Quastel, and Daniel Remenik, A Pfaffian representation for flat ASEP, Comm. Pure Appl. Math. 70 (2017), no. 1, 3–89. MR 3581823, DOI 10.1002/cpa.21644
- Michael Prähofer and Herbert Spohn, Scale invariance of the PNG droplet and the Airy process, J. Statist. Phys. 108 (2002), no. 5-6, 1071–1106. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. MR 1933446, DOI 10.1023/A:1019791415147
- Jeremy Quastel, Introduction to KPZ, Current developments in mathematics, 2011, Int. Press, Somerville, MA, 2012, pp. 125–194. MR 3098078
- Dipankar Roy and Rahul Pandit, One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: limit distributions, Phys. Rev. E 101 (2020), no. 3, 030103(R), 6. MR 4083969, DOI 10.1103/PhysRevE.101.030103
- Tomohiro Sasamoto and Herbert Spohn, Exact height distributions for the KPZ equation with narrow wedge initial condition, Nuclear Phys. B 834 (2010), no. 3, 523–542. MR 2628936, DOI 10.1016/j.nuclphysb.2010.03.026
- Anamaria Savu, Hydrodynamic scaling limit of continuum solid-on-solid model, J. Appl. Math. , posted on (2006), Art. ID 69101, 37. MR 2231983, DOI 10.1155/JAM/2006/69101
- Craig A. Tracy and Harold Widom, Asymptotics in ASEP with step initial condition, Comm. Math. Phys. 290 (2009), no. 1, 129–154. MR 2520510, DOI 10.1007/s00220-009-0761-0
- Craig A. Tracy and Harold Widom, On ASEP with step Bernoulli initial condition, J. Stat. Phys. 137 (2009), no. 5-6, 825–838. MR 2570751, DOI 10.1007/s10955-009-9867-1
- Craig A. Tracy and Harold Widom, Formulas for ASEP with two-sided Bernoulli initial condition, J. Stat. Phys. 140 (2010), no. 4, 619–634. MR 2670733, DOI 10.1007/s10955-010-0013-x
- H. van Beijeren, R. Kutner, and H. Spohn, Excess noise for driven diffusive systems, Phys. Rev. Lett. 54 (1985), no. 18, 2026–2029. MR 789756, DOI 10.1103/PhysRevLett.54.2026
- S. R. S. Varadhan, Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion, Ann. Inst. H. Poincaré Probab. Statist. 31 (1995), no. 1, 273–285 (English, with English and French summaries). MR 1340041
- Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357, DOI 10.1007/978-3-662-06400-9
- B. Virág, The heat and the landscape I, arXiv:2008.07241, 2020.
- X. Wu, Tightness and local fluctuation estimates for the KPZ line ensemble, arXiv:2106.08051, 2021.
- Lin Xu, Diffusive scaling limit for mean zero asymmetric simple exclusion processes, ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.)–New York University. MR 2690363
Bibliographic Information
- Jeremy Quastel
- Affiliation: Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Ontario M5S 2E4, Canada
- MR Author ID: 322635
- Email: quastel@math.toronto.edu
- Sourav Sarkar
- Affiliation: University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
- MR Author ID: 1286815
- Email: ss2871@cam.ac.uk
- Received by editor(s): November 23, 2020
- Received by editor(s) in revised form: August 23, 2021, November 5, 2021, and December 1, 2021
- Published electronically: March 8, 2022
- Additional Notes: Both authors were supported by the Natural Sciences and Engineering Research Council of Canada.
- © Copyright 2022 American Mathematical Society
- Journal: J. Amer. Math. Soc. 36 (2023), 251-289
- MSC (2020): Primary 60K35, 60H15; Secondary 82C24
- DOI: https://doi.org/10.1090/jams/999
- MathSciNet review: 4495842