Gel′fand-Fuchs cohomology in algebraic geometry and factorization algebras
HTML articles powered by AMS MathViewer
- by Benjamin Hennion and Mikhail Kapranov;
- J. Amer. Math. Soc. 36 (2023), 311-396
- DOI: https://doi.org/10.1090/jams/1001
- Published electronically: April 6, 2022
- HTML | PDF | Request permission
Abstract:
Let $X$ be a smooth affine variety over a field $\mathbf k$ of characteristic $0$ and $T(X)$ be the Lie algebra of regular vector fields on $X$. We compute the Lie algebra cohomology of $T(X)$ with coefficients in $\mathbf k$. The answer is given in topological terms relative to any embedding $\mathbf k\subset \mathbb {C}$ and is analogous to the classical Gel′fand-Fuchs computation for smooth vector fields on a $C^\infty$-manifold. Unlike the $C^\infty$-case, our setup is purely algebraic: no topology on $T(X)$ is present. The proof is based on the techniques of factorization algebras, both in algebro-geometric and topological contexts.References
- David Ayala and John Francis, Factorization homology of topological manifolds, J. Topol. 8 (2015), no. 4, 1045–1084. MR 3431668, DOI 10.1112/jtopol/jtv028
- David Ayala and John Francis, Poincaré/Koszul duality, Comm. Math. Phys. 365 (2019), no. 3, 847–933. MR 3916983, DOI 10.1007/s00220-019-03311-z
- Hidematu Tanaka, Boundary value problems of biharmonic functions, Nagoya Math. J. 61 (1976), 85–101. MR 419798, DOI 10.1017/S0027763000017311
- Clark Barwick, Saul Glasman, and Denis Nardin, Dualizing cartesian and cocartesian fibrations, Theory Appl. Categ. 33 (2018), Paper No. 4, 67–94. MR 3746613
- A. A. Beĭlinson, On the derived category of perverse sheaves, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 27–41. MR 923133, DOI 10.1007/BFb0078365
- Alexander Beilinson and Vladimir Drinfeld, Chiral algebras, American Mathematical Society Colloquium Publications, vol. 51, American Mathematical Society, Providence, RI, 2004. MR 2058353, DOI 10.1090/coll/051
- Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527, DOI 10.1007/BFb0073549
- A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic $D$-modules, Perspectives in Mathematics, vol. 2, Academic Press, Inc., Boston, MA, 1987. MR 882000
- R. Bott and G. Segal, The cohomology of the vector fields on a manifold, Topology 16 (1977), no. 4, 285–298. MR 645730, DOI 10.1016/0040-9383(77)90036-2
- D. Calaque and J. Grivaux, Formal moduli problems and formal derived stacks, arXiv:1802.09556.
- Hitosi Hiramatu, On integral inequalities in Riemannian manifolds admitting a one-parameter conformal transformation group, K\B{o}dai Math. Sem. Rep. 26 (1974/75), 75–84. MR 358650
- Kevin Costello and Owen Gwilliam, Factorization algebras in quantum field theory. Vol. 2, New Mathematical Monographs, vol. 41, Cambridge University Press, Cambridge, 2021. MR 4300181, DOI 10.1017/9781316678664
- P. Deligne, Cohomologie à supports propres et construction du foncteur $f^!$, Appendix to \cite{hartshorne-RD}.
- William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, Mathematical Surveys and Monographs, vol. 113, American Mathematical Society, Providence, RI, 2004. MR 2102294, DOI 10.1090/surv/113
- B. Feigin, Conformal Field Theory and Cohomologies of the Lie algebra of Holomorphic Vector Fields on a Complex Curve, Talk at ICM-90 Kyoto.
- B. L. Feĭgin and B. L. Tsygan, Riemann-Roch theorem and Lie algebra cohomology. I, Proceedings of the Winter School on Geometry and Physics (Srní, 1988), 1989, pp. 15–52. MR 1009564
- Giovanni Faonte, Benjamin Hennion, and Mikhail Kapranov, Higher Kac-Moody algebras and moduli spaces of $G$-bundles, Adv. Math. 346 (2019), 389–466. MR 3910800, DOI 10.1016/j.aim.2019.01.040
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847, DOI 10.1007/978-1-4613-0105-9
- John Francis and Dennis Gaitsgory, Chiral Koszul duality, Selecta Math. (N.S.) 18 (2012), no. 1, 27–87. MR 2891861, DOI 10.1007/s00029-011-0065-z
- Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2nd ed., Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004. MR 2082709, DOI 10.1090/surv/088
- Benoit Fresse, Homotopy of operads and Grothendieck-Teichmüller groups. Part 2, Mathematical Surveys and Monographs, vol. 217, American Mathematical Society, Providence, RI, 2017. The applications of (rational) homotopy theory methods. MR 3616816, DOI 10.1090/surv/217.2
- D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Springer-Verlag, 1986.
- Eric D’Hoker, String theory, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 807–1011. MR 1701611
- Dennis Gaitsgory and Jacob Lurie, Weil’s conjecture for function fields. Vol. 1, Annals of Mathematics Studies, vol. 199, Princeton University Press, Princeton, NJ, 2019. MR 3887650
- D. Gaitsgory and J. Lurie, Weil’s conjecture for function fields, http://www.math.harvard.edu/~lurie/papers/tamagawa.pdf.
- Dennis Gaitsgory and Nick Rozenblyum, A study in derived algebraic geometry. Vol. I. Correspondences and duality, Mathematical Surveys and Monographs, vol. 221, American Mathematical Society, Providence, RI, 2017. MR 3701352, DOI 10.1090/surv/221.1
- I. M. Gel′fand and D. B. Fuks, Cohomologies of the Lie algebra of tangent vector fields of a smooth manifold. II, Funkcional. Anal. i Priložen. 4 (1970), no. 2, 23–31 (Russian). MR 285024
- I. M. Gelfand and D. A. Kazhdan, Some problems of differential geometry and the calculation of the cohomologies of Lie algebras of vector fields, Soviet Math. Doklady 12 (1971) 1367–1370.
- I. M. Gel′fand, D. A. Každan, and D. B. Fuks, Actions of infinite-dimensional Lie algebras, Funkcional. Anal. i Priložen. 6 (1972), no. 1, 10–15 (Russian). MR 301767
- David Gepner, Rune Haugseng, and Thomas Nikolaus, Lax colimits and free fibrations in $\infty$-categories, Doc. Math. 22 (2017), 1225–1266. MR 3690268, DOI 10.4171/dm/593
- Ezra Getzler, Lie theory for nilpotent $L_\infty$-algebras, Ann. of Math. (2) 170 (2009), no. 1, 271–301. MR 2521116, DOI 10.4007/annals.2009.170.271
- Grégory Ginot, Notes on factorization algebras, factorization homology and applications, Mathematical aspects of quantum field theories, Math. Phys. Stud., Springer, Cham, 2015, pp. 429–552. MR 3330249
- Saul Glasman, Day convolution for $\infty$-categories, Math. Res. Lett. 23 (2016), no. 5, 1369–1385. MR 3601070, DOI 10.4310/MRL.2016.v23.n5.a6
- Mark Goresky, Robert Kottwitz, and Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83. MR 1489894, DOI 10.1007/s002220050197
- Victor W. Guillemin, Cohomology of vector fields on a manifold, Advances in Math. 10 (1973), 192–220. MR 331445, DOI 10.1016/0001-8708(73)90108-4
- Victor W. Guillemin and Shlomo Sternberg, Supersymmetry and equivariant de Rham theory, Mathematics Past and Present, Springer-Verlag, Berlin, 1999. With an appendix containing two reprints by Henri Cartan [ MR0042426 (13,107e); MR0042427 (13,107f)]. MR 1689252, DOI 10.1007/978-3-662-03992-2
- Owen Gwilliam and Brian R. Williams, Higher Kac-Moody algebras and symmetries of holomorphic field theories, Adv. Theor. Math. Phys. 25 (2021), no. 1, 129–239. MR 4320072, DOI 10.4310/ATMP.2021.v25.n1.a4
- A. Haefliger, Sur la cohomologie de Gelfand-Fuchs, Differential topology and geometry (Proc. Colloq., Dijon, 1974) Lecture Notes in Math., Vol. 484, Springer, Berlin-New York, 1975, pp. 121–152 (French). MR 394698
- André Haefliger, Sur la cohomologie de l’algèbre de Lie des champs de vecteurs, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 4, 503–532 (French). MR 448367, DOI 10.24033/asens.1316
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 222093, DOI 10.1007/BFb0080482
- Robin Hartshorne, Cohomology with compact supports for coherent sheaves on an algebraic variety, Math. Ann. 195 (1972), 199–207. MR 297775, DOI 10.1007/BF01419594
- Allen E. Hatcher, A proof of the Smale conjecture, $\textrm {Diff}(S^{3})\simeq \textrm {O}(4)$, Ann. of Math. (2) 117 (1983), no. 3, 553–607. MR 701256, DOI 10.2307/2007035
- V. A. Hinich and V. V. Schechtman, On homotopy limit of homotopy algebras, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 240–264. MR 923138, DOI 10.1007/BFb0078370
- Vladimir Hinich and Vadim Schechtman, Deformation theory and Lie algebra homology. II, Algebra Colloq. 4 (1997), no. 3, 291–316. MR 1681547
- Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, $D$-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361, DOI 10.1007/978-0-8176-4523-6
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- Nariya Kawazumi, On the complex analytic Gel′fand-Fuks cohomology of open Riemann surfaces, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 3, 655–712 (English, with English and French summaries). MR 1242611, DOI 10.5802/aif.1351
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
- Igor Moiseevich Krichever and S. P. Novikov, Algebras of Virasoro type, Riemann surfaces and the structures of soliton theory, Funktsional. Anal. i Prilozhen. 21 (1987), no. 2, 46–63 (Russian). MR 902293
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- J. Lurie, Higher algebra. http://www.math.harvard.edu/~lurie/papers/HA.pdf.
- J. Lurie, Derived algebraic geometry X: formal moduli problems, http://www.math.harvard.edu/~lurie/papers/DAG-X.pdf.
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1968. MR 239612
- Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, DOI 10.1090/S0894-0347-96-00174-9
- Morihiko Saito, ${\scr D}$-modules on analytic spaces, Publ. Res. Inst. Math. Sci. 27 (1991), no. 2, 291–332. MR 1095238, DOI 10.2977/prims/1195169840
- Martin Schlichenmaier, Krichever-Novikov type algebras, De Gruyter Studies in Mathematics, vol. 53, De Gruyter, Berlin, 2014. Theory and applications. MR 3237422, DOI 10.1515/9783110279641
- J. Shah, Parametrized higher category theory and higher algebra: Exposé II -indexed homotopy limits and colimis, arXiv:1809.05892.
- Friedrich Wagemann, Some remarks on the cohomology of Krichever-Novikov algebras, Lett. Math. Phys. 47 (1999), no. 2, 173–177. MR 1682304, DOI 10.1023/A:1007565132203
- Friedrich Wagemann, Differential graded cohomology and Lie algebras of holomorphic vector fields, Comm. Math. Phys. 208 (1999), no. 2, 521–540. MR 1729097, DOI 10.1007/s002200050768
- C. T. C. Wall, A note on symmetry of singularities, Bull. London Math. Soc. 12 (1980), no. 3, 169–175. MR 572095, DOI 10.1112/blms/12.3.169
Bibliographic Information
- Benjamin Hennion
- Affiliation: Université Paris-Saclay, Laboratoire de mathématiques d’Orsay, 91405 Orsay, France
- MR Author ID: 1219478
- Email: benjamin.hennion@universite-paris-saclay.fr
- Mikhail Kapranov
- Affiliation: Kavli IPMU, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan
- MR Author ID: 200368
- Email: mikhail.kapranov@protonmail.com
- Received by editor(s): April 4, 2019
- Received by editor(s) in revised form: September 30, 2021
- Published electronically: April 6, 2022
- Additional Notes: The research of the second author was supported by World Premier International Reseach Center (WPI Initiative), MEXT, Japan and by the IAS School of Mathematics.
- © Copyright 2022 American Mathematical Society
- Journal: J. Amer. Math. Soc. 36 (2023), 311-396
- MSC (2020): Primary 14F10, 17B56
- DOI: https://doi.org/10.1090/jams/1001
- MathSciNet review: 4536901