Logarithmic Riemann–Hilbert correspondences for rigid varieties
HTML articles powered by AMS MathViewer
- by Hansheng Diao, Kai-Wen Lan, Ruochuan Liu and Xinwen Zhu;
- J. Amer. Math. Soc. 36 (2023), 483-562
- DOI: https://doi.org/10.1090/jams/1002
- Published electronically: June 24, 2022
- HTML | PDF | Request permission
Abstract:
On any smooth algebraic variety over a $p$-adic local field, we construct a tensor functor from the category of de Rham $p$-adic étale local systems to the category of filtered algebraic vector bundles with integrable connections satisfying the Griffiths transversality, which we view as a $p$-adic analogue of Deligne’s classical Riemann–Hilbert correspondence. A crucial step is to construct canonical extensions of the desired connections to suitable compactifications of the algebraic variety with logarithmic poles along the boundary, in a precise sense characterized by the eigenvalues of residues; hence the title of the paper. As an application, we show that this $p$-adic Riemann–Hilbert functor is compatible with the classical one over all Shimura varieties, for local systems attached to representations of the associated reductive algebraic groups.References
- Yves André and Francesco Baldassarri, De Rham cohomology of differential modules on algebraic varieties, Progress in Mathematics, vol. 189, Birkhäuser Verlag, Basel, 2001. MR 1807281, DOI 10.1007/978-3-0348-8336-8
- Yves André, Francesco Baldassarri, and Maurizio Cailotto, De Rham cohomology of differential modules on algebraic varieties, Progress in Mathematics, vol. 189, Birkhäuser/Springer, Cham, [2020] ©2020. Second edition [of 1807281 ]. MR 4328338, DOI 10.1007/978-3-030-39719-7
- Ahmed Abbes, Michel Gros, and Takeshi Tsuji, The $p$-adic Simpson correspondence, Annals of Mathematics Studies, vol. 193, Princeton University Press, Princeton, NJ, 2016. MR 3444777, DOI 10.1515/9781400881239
- Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR 354654
- Fabrizio Andreatta and Adrian Iovita, Comparison isomorphisms for smooth formal schemes, J. Inst. Math. Jussieu 12 (2013), no. 1, 77–151. MR 3001736, DOI 10.1017/S1474748012000643
- Yasuo Akizuki and Shigeo Nakano, Note on Kodaira-Spencer’s proof of Lefschetz theorems, Proc. Japan Acad. 30 (1954), 266–272. MR 66694
- F. Baldassarri, Comparaison entre la cohomologie algébrique et la cohomologie $p$-adique rigide à coefficients dans un module différentiel. II. Cas des singularités régulières à plusieurs variables, Math. Ann. 280 (1988), no. 3, 417–439 (French). MR 936321, DOI 10.1007/BF01456335
- Laurent Berger and Pierre Colmez, Familles de représentations de de Rham et monodromie $p$-adique, Astérisque 319 (2008), 303–337 (French, with English and French summaries). Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules. MR 2493221
- A. A. Beĭlinson, How to glue perverse sheaves, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 42–51. MR 923134, DOI 10.1007/BFb0078366
- A. Beilinson, $p$-adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 25 (2012), no. 3, 715–738. MR 2904571, DOI 10.1090/S0894-0347-2012-00729-2
- Vladimir G. Berkovich, Integration of one-forms on $p$-adic analytic spaces, Annals of Mathematics Studies, vol. 162, Princeton University Press, Princeton, NJ, 2007. MR 2263704, DOI 10.1515/9781400837151
- S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
- Don Blasius, A $p$-adic property of Hodge classes on abelian varieties, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 293–308. MR 1265557, DOI 10.1090/pspum/055.2/1265557
- Armand Borel, Introduction aux groupes arithmétiques, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969 (French). MR 244260
- M. V. Borovoĭ, Langlands’ conjecture concerning conjugation of connected Shimura varieties, Selecta Math. Soviet. 3 (1983/84), no. 1, 3–39. Selected translations. MR 732450
- Olivier Brinon, Représentations $p$-adiques cristallines et de de Rham dans le cas relatif, Mém. Soc. Math. Fr. (N.S.) 112 (2008), vi+159 (French, with English and French summaries). MR 2484979, DOI 10.24033/msmf.424
- Eduardo Cattani, Aroldo Kaplan, and Wilfried Schmid, Variations of polarized Hodge structure: asymptotics and monodromy, Hodge theory (Sant Cugat, 1985) Lecture Notes in Math., vol. 1246, Springer, Berlin, 1987, pp. 16–31. MR 894039, DOI 10.1007/BFb0077526
- Pierre Colmez and Wiesława Nizioł, Syntomic complexes and $p$-adic nearby cycles, Invent. Math. 208 (2017), no. 1, 1–108. MR 3621832, DOI 10.1007/s00222-016-0683-3
- Brian Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2, 473–541 (English, with English and French summaries). MR 1697371, DOI 10.5802/aif.1681
- Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 417174, DOI 10.1007/BFb0061194
- Pierre Deligne, Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 247–289 (French). MR 546620
- Pierre Deligne and Luc Illusie, Relèvements modulo $p^2$ et décomposition du complexe de de Rham, Invent. Math. 89 (1987), no. 2, 247–270 (French). MR 894379, DOI 10.1007/BF01389078
- H. Diao, K.-W. Lan, R. Liu, and X. Zhu, Logarithmic adic spaces: some foundational results, arXiv:1912.09836, 2019.
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325, DOI 10.1007/978-3-540-38955-2
- Pierre Deligne and Georgios Pappas, Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Math. 90 (1994), no. 1, 59–79 (French). MR 1266495
- Hélène Esnault and Eckart Viehweg, Lectures on vanishing theorems, DMV Seminar, vol. 20, Birkhäuser Verlag, Basel, 1992. MR 1193913, DOI 10.1007/978-3-0348-8600-0
- Gerd Faltings, Crystalline cohomology and $p$-adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 25–80. MR 1463696
- Gerd Faltings, Almost étale extensions, Astérisque 279 (2002), 185–270. Cohomologies $p$-adiques et applications arithmétiques, II. MR 1922831
- Gerd Faltings, A $p$-adic Simpson correspondence, Adv. Math. 198 (2005), no. 2, 847–862. MR 2183394, DOI 10.1016/j.aim.2005.05.026
- Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
- Michael Harris, Functorial properties of toroidal compactifications of locally symmetric varieties, Proc. London Math. Soc. (3) 59 (1989), no. 1, 1–22. MR 997249, DOI 10.1112/plms/s3-59.1.1
- Michael Harris, Automorphic forms and the cohomology of vector bundles on Shimura varieties, Automorphic forms, Shimura varieties, and $L$-functions, Vol. II (Ann Arbor, MI, 1988) Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990, pp. 41–91. MR 1044828
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original. MR 1834454, DOI 10.1090/gsm/034
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, Ann. Math. (2) 79 (1964), no. 1, 109–203.
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: II, Ann. Math. (2) 79 (1964), no. 2, 205–326.
- Roland Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30, Friedr. Vieweg & Sohn, Braunschweig, 1996. MR 1734903, DOI 10.1007/978-3-663-09991-8
- Kazuhiro Ito, Tetsushi Ito, and Teruhisa Koshikawa, CM liftings of $K3$ surfaces over finite fields and their applications to the Tate conjecture, Forum Math. Sigma 9 (2021), Paper No. e29, 70. MR 4241794, DOI 10.1017/fms.2021.24
- Luc Illusie, Kazuya Kato, and Chikara Nakayama, Quasi-unipotent logarithmic Riemann-Hilbert correspondences, J. Math. Sci. Univ. Tokyo 12 (2005), no. 1, 1–66. MR 2126784
- Luc Illusie, Kazuya Kato, and Chikara Nakayama, Erratum to: “Quasi-unipotent logarithmic Riemann-Hilbert correspondences” [J. Math. Sci. Univ. Tokyo 12 (2005), no. 1, 1–66; MR2126784], J. Math. Sci. Univ. Tokyo 14 (2007), no. 1, 113–116. MR 2320387
- Luc Illusie, Réduction semi-stable et décomposition de complexes de de Rham à coefficients, Duke Math. J. 60 (1990), no. 1, 139–185 (French). MR 1047120, DOI 10.1215/S0012-7094-90-06005-3
- Nicholas M. Katz, The regularity theorem in algebraic geometry, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars Éditeur, Paris, 1971, pp. 437–443. MR 472822
- Mark Kisin, Analytic functions on Zariski open sets, and local cohomology, J. Reine Angew. Math. 506 (1999), 117–144. MR 1665685, DOI 10.1515/crll.1999.001
- Mark Kisin, Potential semi-stability of $p$-adic étale cohomology, Israel J. Math. 129 (2002), 157–173. MR 1910940, DOI 10.1007/BF02773161
- Kiran S. Kedlaya and Ruochuan Liu, Relative $p$-adic Hodge theory: foundations, Astérisque 371 (2015), 239 (English, with English and French summaries). MR 3379653
- Kiran A. Kedlaya and Ruochuan Liu, Relative $p$-adic Hodge theory, II: Imperfect period rings, preprint, 2016.
- K. Kodaira, On a differential-geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 1268–1273. MR 66693, DOI 10.1073/pnas.39.12.1268
- Ursula Köpf, Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, Schr. Math. Inst. Univ. Münster (2) Heft 7 (1974), iv+72 (German). MR 422671
- Kai-Wen Lan, Higher Koecher’s principle, Math. Res. Lett. 23 (2016), no. 1, 163–199. MR 3512882, DOI 10.4310/MRL.2016.v23.n1.a9
- Kai-Wen Lan, Vanishing theorems for coherent automorphic cohomology, Res. Math. Sci. 3 (2016), Paper No. 39, 43. MR 3571345, DOI 10.1186/s40687-016-0085-6
- Kai-Wen Lan, An example-based introduction to Shimura varieties, Proceedings of the ETHZ Summer School on Motives and Complex Multiplication, Preprint, 2017, To appear.
- K.-W. Lan, R. Liu, and X. Zhu, De Rham comparison and Poincaré duality for rigid varieties, arXiv:1912.13030, 2019.
- Shizhang Li and Xuanyu Pan, Logarithmic de Rham comparison for open rigid spaces, Forum Math. Sigma 7 (2019), Paper No. e32, 53. MR 4016499, DOI 10.1017/fms.2019.27
- Kai-Wen Lan and Junecue Suh, Vanishing theorems for torsion automorphic sheaves on compact PEL-type Shimura varieties, Duke Math. J. 161 (2012), no. 6, 1113–1170. MR 2913102, DOI 10.1215/00127094-1548452
- Kai-Wen Lan and Junecue Suh, Vanishing theorems for torsion automorphic sheaves on general PEL-type Shimura varieties, Adv. Math. 242 (2013), 228–286. MR 3055995, DOI 10.1016/j.aim.2013.04.004
- Kai-Wen Lan and Benoît Stroh, Relative cohomology of cuspidal forms on PEL-type Shimura varieties, Algebra Number Theory 8 (2014), no. 8, 1787–1799. MR 3285615, DOI 10.2140/ant.2014.8.1787
- Kai-Wen Lan and Benoît Stroh, Nearby cycles of automorphic étale sheaves, Compos. Math. 154 (2018), no. 1, 80–119. MR 3719245, DOI 10.1112/S0010437X1700745X
- Kai-Wen Lan and Benoît Stroh, Nearby cycles of automorphic étale sheaves, II, Cohomology of arithmetic groups, Springer Proc. Math. Stat., vol. 245, Springer, Cham, 2018, pp. 83–106. MR 3848816, DOI 10.1007/978-3-319-95549-0_{4}
- Ruochuan Liu and Xinwen Zhu, Rigidity and a Riemann-Hilbert correspondence for $p$-adic local systems, Invent. Math. 207 (2017), no. 1, 291–343. MR 3592758, DOI 10.1007/s00222-016-0671-7
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- J. S. Milne, The action of an automorphism of $\textbf {C}$ on a Shimura variety and its special points, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 239–265. MR 717596
- J. S. Milne, Canonical models of (mixed) Shimura varieties and automorphic vector bundles, Automorphic forms, Shimura varieties, and $L$-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 283–414. MR 1044823
- J. S. Milne, Introduction to Shimura varieties, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 265–378. MR 2192012
- Masayoshi Nagata, Imbedding of an abstract variety in a complete variety, J. Math. Kyoto Univ. 2 (1962), 1–10. MR 142549, DOI 10.1215/kjm/1250524969
- Wiesława Nizioł, Semistable conjecture via $K$-theory, Duke Math. J. 141 (2008), no. 1, 151–178. MR 2372150, DOI 10.1215/S0012-7094-08-14114-6
- Wiesława Nizioł, On uniqueness of $p$-adic period morphisms, Pure Appl. Math. Q. 5 (2009), no. 1, 163–212. MR 2520458, DOI 10.4310/PAMQ.2009.v5.n1.a5
- Stefan Patrikis, Variations on a theorem of Tate, Mem. Amer. Math. Soc. 258 (2019), no. 1238, viii+156. MR 3915584, DOI 10.1090/memo/1238
- Richard Pink, Arithmetical compactification of mixed Shimura varieties, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 209, Universität Bonn, Mathematisches Institut, Bonn, 1990. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1989. MR 1128753
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- Ryan Reich, Notes on Beilinson’s “How to glue perverse sheaves” [MR0923134], J. Singul. 1 (2010), 94–115. MR 2671769, DOI 10.5427/jsing.2010.1g
- Morihiko Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995 (1989) (French). MR 1000123, DOI 10.2977/prims/1195173930
- Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. MR 1047415, DOI 10.2977/prims/1195171082
- Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211–319. MR 382272, DOI 10.1007/BF01389674
- Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313. MR 3090258, DOI 10.1007/s10240-012-0042-x
- Peter Scholze, $p$-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi 1 (2013), e1, 77. MR 3090230, DOI 10.1017/fmp.2013.1
- Peter Scholze, $p$-adic Hodge theory for rigid-analytic varieties—corrigendum [ MR3090230], Forum Math. Pi 4 (2016), e6, 4. MR 3535697, DOI 10.1017/fmp.2016.4
- Jean-Pierre Serre, Prolongement de faisceaux analytiques cohérents, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 363–374 (French). MR 212214, DOI 10.5802/aif.234
- Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. MR 263823
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
- Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 236190, DOI 10.2307/1970722
- Junecue Suh, Vanishing theorems for mixed Hodge modules and applications, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 11, 2589–2606. MR 3861803, DOI 10.4171/JEMS/819
- P. Scholze and J. Weinstein, Berkeley lectures on $p$-adic geometry, Annals of Mathematics Studies, vol. 207, Princeton University Press, Princeton, 2020.
- Takeshi Tsuji, $p$-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), no. 2, 233–411. MR 1705837, DOI 10.1007/s002220050330
- Go Yamashita, $p$-adic Hodge theory for open varieties, C. R. Math. Acad. Sci. Paris 349 (2011), no. 21-22, 1127–1130 (English, with English and French summaries). MR 2855488, DOI 10.1016/j.crma.2011.10.016
Bibliographic Information
- Hansheng Diao
- Affiliation: Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, People’s Republic of China
- Email: hdiao@mail.tsinghua.edu.cn
- Kai-Wen Lan
- Affiliation: School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE, Minneapolis, Minnesota 55455
- MR Author ID: 941160
- ORCID: 0000-0003-0795-220X
- Email: kwlan@math.umn.edu
- Ruochuan Liu
- Affiliation: Beijing International Center for Mathematical Research, Peking University, 5 Yi He Yuan Road, Beijing 100871, People’s Republic of China
- MR Author ID: 841376
- ORCID: 0000-0002-2056-2727
- Email: liuruochuan@math.pku.edu.cn
- Xinwen Zhu
- Affiliation: Department of Mathematics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125
- MR Author ID: 868127
- Email: xzhu@caltech.edu
- Received by editor(s): August 24, 2018
- Received by editor(s) in revised form: December 22, 2019, July 25, 2021, August 13, 2021, August 14, 2021, January 27, 2022, and February 15, 2022
- Published electronically: June 24, 2022
- Additional Notes: The second author was partially supported by the National Science Foundation under agreement No. DMS-1352216, by an Alfred P. Sloan Research Fellowship, and by a Simons Fellowship in Mathematics. The third author was partially supported by the National Natural Science Foundation of China under agreement Nos. NSFC-11571017 and NSFC-11725101, and by the Tencent Foundation. The fourth author was partially supported by the National Science Foundation under agreement Nos. DMS-1602092 and DMS-1902239, by an Alfred P. Sloan Research Fellowship, and by a Simons Fellowship in Mathematics. Any opinions, findings, and conclusions or recommendations expressed in this writing are those of the authors, and do not necessarily reflect the views of the funding organizations.
- © Copyright 2022 American Mathematical Society
- Journal: J. Amer. Math. Soc. 36 (2023), 483-562
- MSC (2020): Primary 14F40, 14G22; Secondary 14D07, 14F30, 14G35
- DOI: https://doi.org/10.1090/jams/1002
- MathSciNet review: 4536903