Ricci flow and diffeomorphism groups of 3-manifolds
HTML articles powered by AMS MathViewer
- by Richard H. Bamler and Bruce Kleiner;
- J. Amer. Math. Soc. 36 (2023), 563-589
- DOI: https://doi.org/10.1090/jams/1003
- Published electronically: August 12, 2022
- HTML | PDF | Request permission
Abstract:
We complete the proof of the Generalized Smale Conjecture, apart from the case of $RP^3$, and give a new proof of Gabai’s theorem for hyperbolic $3$-manifolds. We use an approach based on Ricci flow through singularities, which applies uniformly to spherical space forms, except $S^3$ and $RP^3$, as well as hyperbolic manifolds, to prove that the space of metrics of constant sectional curvature is contractible. As a corollary, for such a $3$-manifold $X$, the inclusion $\operatorname {Isom}(X,g)\rightarrow \operatorname {Diff}(X)$ is a homotopy equivalence for any Riemannian metric $g$ of constant sectional curvature.References
- Kouhei Asano, Homeomorphisms of prism manifolds, Yokohama Math. J. 26 (1978), no. 1, 19–25. MR 524878
- Richard H. Bamler, Stability of hyperbolic manifolds with cusps under Ricci flow, Adv. Math. 263 (2014), 412–467. MR 3239144, DOI 10.1016/j.aim.2014.07.003
- Richard H. Bamler, The long-time behavior of 3-dimensional Ricci flow on certain topologies, J. Reine Angew. Math. 725 (2017), 183–215. MR 3630121, DOI 10.1515/crelle-2014-0101
- R. Bamler and B. Kleiner, Ricci flow and contractibility of spaces of metrics, arXiv:1909.08710, 2019.
- R. Bamler and B. Kleiner, Diffeomorphism groups of prime $3$-manifolds, arXiv:2108.03302, 2021.
- Richard H. Bamler and Bruce Kleiner, Uniqueness and stability of Ricci flow through singularities, Acta Math. 228 (2022), no. 1, 1–215. MR 4448680, DOI 10.4310/acta.2022.v228.n1.a1
- Michel Boileau and Jean-Pierre Otal, Scindements de Heegaard et groupe des homéotopies des petites variétés de Seifert, Invent. Math. 106 (1991), no. 1, 85–107 (French). MR 1123375, DOI 10.1007/BF01243906
- Francis Bonahon, Difféotopies des espaces lenticulaires, Topology 22 (1983), no. 3, 305–314 (French). MR 710104, DOI 10.1016/0040-9383(83)90016-2
- Jean Cerf, Groupes d’automorphismes et groupes de difféomorphismes des variétés compactes de dimension $3$, Bull. Soc. Math. France 87 (1959), 319–329 (French). MR 116351, DOI 10.24033/bsmf.1528
- Jean Cerf, La nullité de $\pi _{0}(\textrm {Diff}S^{3}$. 1. Position du problème, Séminaire Henri Cartan, 1962/63, École Norm. Sup., Paris, 1964, pp. Exp. 9-10, 27 (French). MR 198484
- Jean Cerf, La nullité de $\pi _{0}(\textrm {Diff}\,S^{3}$. 2. Espaces fonctionnels liés aux décompositions d’une sphěre plongée dans R3, Séminaire Henri Cartan, 1962/63, École Norm. Sup., Paris, 1964, pp. Exp. 20, 29 (French). MR 198485
- Jean Cerf, La nullité de $\pi _{0}(\textrm {Diff}S^{3}$. 3. Construction d’une section pour le revêtement ${\cal R}$, Séminaire Henri Cartan, 1962/63, École Norm. Sup., Paris, 1964, pp. Exp. 21, 25 (French). MR 198486
- Jean Cerf, La nullité de $\pi _{0}(\textrm {Diff}S^{3}$. Théorèmes de fibration des espaces de plongements. Applications, Séminaire Henri Cartan, 1962/63, École Norm. Sup., Paris, 1964, pp. Exp. 8, 13 (French). MR 198483
- Tobias H. Colding and William P. Minicozzi II, Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman, J. Amer. Math. Soc. 18 (2005), no. 3, 561–569. MR 2138137, DOI 10.1090/S0894-0347-05-00486-8
- Sylvain E. Cappell and Julius L. Shaneson, A counterexample on the oozing problem for closed manifolds, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978) Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 627–634. MR 561242
- Georges de Rham, Sur les complexes avec automorphismes, Comment. Math. Helv. 12 (1940), 191–211 (French). MR 2551, DOI 10.1007/BF01620647
- Thomas Farrell, Zhou Gang, Dan Knopf, and Pedro Ontaneda, Sphere bundles with $1/4$-pinched fiberwise metrics, Trans. Amer. Math. Soc. 369 (2017), no. 9, 6613–6630. MR 3660235, DOI 10.1090/tran/6993
- Wolfgang Franz, Über die Torsion einer Überdeckung, J. Reine Angew. Math. 173 (1935), 245–254 (German). MR 1581473, DOI 10.1515/crll.1935.173.245
- David Gabai, The Smale conjecture for hyperbolic 3-manifolds: $\textrm {Isom}(M^3)\simeq \textrm {Diff}(M^3)$, J. Differential Geom. 58 (2001), no. 1, 113–149. MR 1895350
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Allen Hatcher, Homeomorphisms of sufficiently large $P^{2}$-irreducible $3$-manifolds, Topology 15 (1976), no. 4, 343–347. MR 420620, DOI 10.1016/0040-9383(76)90027-6
- Allen E. Hatcher, A proof of the Smale conjecture, $\textrm {Diff}(S^{3})\simeq \textrm {O}(4)$, Ann. of Math. (2) 117 (1983), no. 3, 553–607. MR 701256, DOI 10.2307/2007035
- Sungbok Hong, John Kalliongis, Darryl McCullough, and J. Hyam Rubinstein, Diffeomorphisms of elliptic 3-manifolds, Lecture Notes in Mathematics, vol. 2055, Springer, Heidelberg, 2012. MR 2976322, DOI 10.1007/978-3-642-31564-0
- N. V. Ivanov, Groups of diffeomorphisms of Waldhausen manifolds, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 66 (1976), 172–176, 209 (Russian, with English summary). Studies in topology, II. MR 448370
- N. V. Ivanov, Homotopy of spaces of diffeomorphisms of some three-dimensional manifolds, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 122 (1982), 72–103, 164–165, Studies in topology, IV.
- N. V. Ivanov, Homotopy of spaces of diffeomorphisms of some three-dimensional manifolds, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 122 (1982), 72–103, 164–165 (Russian, with English summary). Studies in topology, IV. MR 661467
- Bruce Kleiner and John Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008), no. 5, 2587–2855. MR 2460872, DOI 10.2140/gt.2008.12.2587
- Bruce Kleiner and John Lott, Singular Ricci flows I, Acta Math. 219 (2017), no. 1, 65–134. MR 3765659, DOI 10.4310/ACTA.2017.v219.n1.a4
- François Laudenbach, Topologie de la dimension trois: homotopie et isotopie, Astérisque, No. 12, Société Mathématique de France, Paris, 1974 (French). With an English summary and table of contents. MR 356056
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 196736, DOI 10.1090/S0002-9904-1966-11484-2
- G. Perelman, Ricci flow with surgery on three-manifolds, arXiv:math/0303109v1, 2003.
- G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv:math/0307245v1, 2008.
- J. H. Rubinstein and J. S. Birman, One-sided Heegaard splittings and homeotopy groups of some $3$-manifolds, Proc. London Math. Soc. (3) 49 (1984), no. 3, 517–536. MR 759302, DOI 10.1112/plms/s3-49.3.517
- Kurt Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg 11 (1935), no. 1, 102–109 (German). MR 3069647, DOI 10.1007/BF02940717
- J. H. Rubinstein, On $3$-manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979), 129–137. MR 531972, DOI 10.1090/S0002-9947-1979-0531972-6
- J. H. Rubinstein, Problems around 3-manifolds, Workshop on Heegaard Splittings, Geom. Topol. Monogr., vol. 12, Geom. Topol. Publ., Coventry, 2007, pp. 285–298. MR 2408251, DOI 10.2140/gtm.2007.12.285
- S. Smale, Review of Cerf’s paper \cite{cerf}, 1961.
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
- Rugang Ye, Ricci flow, Einstein metrics and space forms, Trans. Amer. Math. Soc. 338 (1993), no. 2, 871–896. MR 1108615, DOI 10.1090/S0002-9947-1993-1108615-3
Bibliographic Information
- Richard H. Bamler
- Affiliation: Department of Mathematics, University of California, Berkeley, Berkeley, California 94720
- MR Author ID: 976245
- ORCID: 0000-0003-0872-9712
- Email: rbamler@berkeley.edu
- Bruce Kleiner
- Affiliation: Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, New York 10012
- MR Author ID: 269190
- Email: bkleiner@cims.nyu.edu
- Received by editor(s): January 4, 2018
- Received by editor(s) in revised form: February 16, 2022
- Published electronically: August 12, 2022
- Additional Notes: The first author was supported by a Sloan Research Fellowship and NSF grant DMS-1611906. The second author was supported by NSF grants DMS-1405899, DMS-1406394, DMS-1711556, and a Simons Collaboration grant
- © Copyright 2022 American Mathematical Society
- Journal: J. Amer. Math. Soc. 36 (2023), 563-589
- MSC (2020): Primary 53E20, 57R50
- DOI: https://doi.org/10.1090/jams/1003
- MathSciNet review: 4536904