Emergence of wandering stable components
HTML articles powered by AMS MathViewer
- by Pierre Berger and Sébastien Biebler;
- J. Amer. Math. Soc. 36 (2023), 397-482
- DOI: https://doi.org/10.1090/jams/1005
- Published electronically: June 30, 2022
- HTML | PDF
Abstract:
We prove the existence of a locally dense set of real polynomial automorphisms of $\mathbb C^2$ displaying a wandering Fatou component; in particular this solves the problem of their existence, reported by Bedford and Smillie in 1991. These Fatou components have non-empty real trace and their statistical behavior is historic with high emergence. The proof is based on a geometric model for parameter families of surface real mappings. At a dense set of parameters, we show that the dynamics of the model displays a historic, high emergent, stable domain. We show that this model can be embedded into families of Hénon maps of explicit degree and also in an open and dense set of $5$-parameter $C^r$-families of surface diffeomorphisms in the Newhouse domain, for every $2\le r\le \infty$ and $r=\omega$. This implies a complement of the work of Kiriki and Soma [Adv. Math. 306 (2017), pp. 524–588], a proof of the last Taken’s problem in the $C^{\infty }$ and $C^\omega$-case. The main difficulty is that here perturbations are done only along finite-dimensional parameter families. The proof is based on the multi-renormalization introduced by Berger [Zoology in the Hénon family: twin babies and Milnor’s swallows, 2018].References
- Leandro Arosio, Anna Miriam Benini, John Erik Fornæss, and Han Peters, Dynamics of transcendental Hénon maps, Math. Ann. 373 (2019), no. 1-2, 853–894. MR 3968889, DOI 10.1007/s00208-018-1643-6
- Leandro Arosio, Luka Boc Thaler, and Han Peters, A transcendental Hénon map with an oscillating wandering short $\Bbb {C}^2$, Math. Z. 299 (2021), no. 1-2, 357–372. MR 4311606, DOI 10.1007/s00209-020-02677-4
- M. Astorg, L. Boc Thaler, and H. Peters, Wandering domains arising from Lavaurs maps with Siegel disks, 2019.
- Matthieu Astorg, Xavier Buff, Romain Dujardin, Han Peters, and Jasmin Raissy, A two-dimensional polynomial mapping with a wandering Fatou component, Ann. of Math. (2) 184 (2016), no. 1, 263–313. MR 3505180, DOI 10.4007/annals.2016.184.1.2
- I. N. Baker, An entire function which has wandering domains, J. Austral. Math. Soc. Ser. A 22 (1976), no. 2, 173–176. MR 419759, DOI 10.1017/s1446788700015287
- Eric Bedford, Dynamics of polynomial diffeomorphisms in $\Bbb C^2$: foliations and laminations, ICCM Not. 3 (2015), no. 1, 58–63. MR 3385506, DOI 10.4310/ICCM.2015.v3.n1.a7
- Eric Bedford and John Smillie, Polynomial diffeomorphisms of $\textbf {C}^2$. II. Stable manifolds and recurrence, J. Amer. Math. Soc. 4 (1991), no. 4, 657–679. MR 1115786, DOI 10.1090/S0894-0347-1991-1115786-3
- Eric Bedford and John Smillie, Polynomial diffeomorphisms of $\textbf {C}^2$: currents, equilibrium measure and hyperbolicity, Invent. Math. 103 (1991), no. 1, 69–99. MR 1079840, DOI 10.1007/BF01239509
- P. Berger, Persistence of laminations, Bull. Braz. Math. Soc. (N.S.) 41 (2010), no. 2, 259–319., DOI 10.1007/s00574-010-0013-0
- Pierre Berger, Generic family with robustly infinitely many sinks, Invent. Math. 205 (2016), no. 1, 121–172. MR 3514960, DOI 10.1007/s00222-015-0632-6
- P. Berger, Emergence and non-typicality of the finiteness of the attractors in many topologies, Proc. Steklov Inst. Math 297 (2017), 1–27., DOI 10.1134/S0081543817040010
- P. Berger, Zoology in the Hénon family: twin babies and Milnor’s swallows, arXiv:1801.05628 (2018).
- Pierre Berger, Correction to: Generic family with robustly infinitely many sinks, Invent. Math. 218 (2019), no. 2, 649–656. MR 4011708, DOI 10.1007/s00222-019-00912-2
- Pierre Berger and Jairo Bochi, On emergence and complexity of ergodic decompositions, Adv. Math. 390 (2021), Paper No. 107904, 52. MR 4300328, DOI 10.1016/j.aim.2021.107904
- Walter Bergweiler, An entire function with simply and multiply connected wandering domains, Pure Appl. Math. Q. 7 (2011), no. 1, 107–120. MR 2900166, DOI 10.4310/PAMQ.2011.v7.n1.a6
- Christopher J. Bishop, Constructing entire functions by quasiconformal folding, Acta Math. 214 (2015), no. 1, 1–60. MR 3316755, DOI 10.1007/s11511-015-0122-0
- Christian Bonatti and Sylvain Crovisier, Center manifolds for partially hyperbolic sets without strong unstable connections, J. Inst. Math. Jussieu 15 (2016), no. 4, 785–828. MR 3569077, DOI 10.1017/S1474748015000055
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Second revised edition, Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 2008. With a preface by David Ruelle; Edited by Jean-René Chazottes. MR 2423393, DOI 10.1007/978-3-540-77695-6
- X. Buff and A. Epstein, Bifurcation measure and postcritically finite rational maps, Complex Dynamics: Families and Friends, 2009.
- Eduardo Colli and Edson Vargas, Non-trivial wandering domains and homoclinic bifurcations, Ergodic Theory Dynam. Systems 21 (2001), no. 6, 1657–1681. MR 1869064, DOI 10.1017/S0143385701001791
- Bernard Dacorogna and Jürgen Moser, On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré C Anal. Non Linéaire 7 (1990), no. 1, 1–26 (English, with French summary). MR 1046081, DOI 10.1016/S0294-1449(16)30307-9
- Arnaud Denjoy, Sur les courbes définies par les équations différentielles, Advancement in Math. 4 (1958), 161–187 (Chinese). MR 101369
- P. Duarte, Elliptic isles in families of area-preserving maps, Ergodic Theory Dynam. Systems 28 (2008), no. 6, 1781–1813. MR 2465600, DOI 10.1017/S0143385707000983
- A. Eremenko and M. Lyubich, Examples of entire functions with pathological dynamics, J. Lond. Math. Soc. s2-36 (1987), no. 3, 458–468, https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s2-36.3.458.
- N. Fagella, S. Godillon, and X. Jarque, Wandering domains for composition of entire functions, Eprint, arXiv:1410.3221, 2014.
- N. Fagella, X. Jarque, and K. Lazebnik, Univalent wandering domains in the Eremenko-Lyubich class, 2017.
- John Erik Fornæss and Nessim Sibony, Complex dynamics in higher dimension, Several complex variables (Berkeley, CA, 1995–1996) Math. Sci. Res. Inst. Publ., vol. 37, Cambridge Univ. Press, Cambridge, 1999, pp. 273–296. MR 1748606
- John Erik Fornaess and Nessim Sibony, Fatou and Julia sets for entire mappings in $\textbf {C}^k$, Math. Ann. 311 (1998), no. 1, 27–40. MR 1624255, DOI 10.1007/s002080050174
- John Erik Fornæss and Nessim Sibony, Some open problems in higher dimensional complex analysis and complex dynamics, Publ. Mat. 45 (2001), no. 2, 529–547. MR 1876919, DOI 10.5565/PUBLMAT_{4}5201_{1}1
- Shmuel Friedland and John Milnor, Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynam. Systems 9 (1989), no. 1, 67–99. MR 991490, DOI 10.1017/S014338570000482X
- Lisa R. Goldberg and Linda Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 183–192. MR 857196, DOI 10.1017/S0143385700003394
- S. V. Gonchenko, L. P. Shilnikov, and D. V. Turaev, On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. I, Nonlinearity 21 (2008), no. 5, 923–972. MR 2412321, DOI 10.1088/0951-7715/21/5/003
- David Hahn and Han Peters, A polynomial automorphism with a wandering Fatou component, Adv. Math. 382 (2021), Paper No. 107650, 46. MR 4224048, DOI 10.1016/j.aim.2021.107650
- Michael-R. Herman, Exemples de fractions rationnelles ayant une orbite dense sur la sphère de Riemann, Bull. Soc. Math. France 112 (1984), no. 1, 93–142 (French, with English summary). MR 771920, DOI 10.24033/bsmf.2002
- Brian R. Hunt, Ittai Kan, and James A. Yorke, When Cantor sets intersect thickly, Trans. Amer. Math. Soc. 339 (1993), no. 2, 869–888. MR 1117219, DOI 10.1090/S0002-9947-1993-1117219-8
- Zhuchao Ji, Non-wandering Fatou components for strongly attracting polynomial skew products, J. Geom. Anal. 30 (2020), no. 1, 124–152. MR 4058508, DOI 10.1007/s12220-018-00127-6
- Shin Kiriki, Yushi Nakano, and Teruhiko Soma, Emergence via non-existence of averages, Adv. Math. 400 (2022), Paper No. 108254, 30. MR 4385138, DOI 10.1016/j.aim.2022.108254
- Shin Kiriki and Teruhiko Soma, Takens’ last problem and existence of non-trivial wandering domains, Adv. Math. 306 (2017), 524–588. MR 3581310, DOI 10.1016/j.aim.2016.10.019
- Masashi Kisaka and Mitsuhiro Shishikura, On multiply connected wandering domains of entire functions, Transcendental dynamics and complex analysis, London Math. Soc. Lecture Note Ser., vol. 348, Cambridge Univ. Press, Cambridge, 2008, pp. 217–250. MR 2458806, DOI 10.1017/CBO9780511735233.012
- Roger Kraft, Intersections of thick Cantor sets, Mem. Amer. Math. Soc. 97 (1992), no. 468, vi+119. MR 1106988, DOI 10.1090/memo/0468
- Krastio Lilov, Fatou theory in two dimensions, ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)–University of Michigan. MR 2706157
- Mikhail Lyubich and Han Peters, Classification of invariant Fatou components for dissipative Hénon maps, Geom. Funct. Anal. 24 (2014), no. 3, 887–915. MR 3213832, DOI 10.1007/s00039-014-0280-9
- David Martí-Pete and Mitsuhiro Shishikura, Wandering domains for entire functions of finite order in the Eremenko-Lyubich class, Proc. Lond. Math. Soc. (3) 120 (2020), no. 2, 155–191. MR 4008367, DOI 10.1112/plms.12288
- Helena Mihaljević-Brandt and Lasse Rempe-Gillen, Absence of wandering domains for some real entire functions with bounded singular sets, Math. Ann. 357 (2013), no. 4, 1577–1604. MR 3124942, DOI 10.1007/s00208-013-0936-z
- Carlos Gustavo Moreira and Jean-Christophe Yoccoz, Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 1, 1–68 (French, with English and French summaries). MR 2583264, DOI 10.24033/asens.2115
- Sheldon E. Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9–18. MR 339291, DOI 10.1016/0040-9383(74)90034-2
- Sheldon E. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 101–151. MR 556584, DOI 10.1007/BF02684771
- Dyi-Shing Ou, Nonexistence of wandering domains for strongly dissipative infinitely renormalizable Hénon maps at the boundary of chaos, Invent. Math. 219 (2020), no. 1, 219–280. MR 4050105, DOI 10.1007/s00222-019-00902-4
- Jacob Palis and Jean-Christophe Yoccoz, Implicit formalism for affine-like maps and parabolic composition, Global analysis of dynamical systems, Inst. Phys., Bristol, 2001, pp. 67–87. MR 1858472
- Jacob Palis and Jean-Christophe Yoccoz, Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles, Publ. Math. Inst. Hautes Études Sci. 110 (2009), 1–217. MR 2551484, DOI 10.1007/s10240-009-0023-x
- Juergen Quandt, Stability of Anosov maps, Proc. Amer. Math. Soc. 104 (1988), no. 1, 303–309. MR 958088, DOI 10.1090/S0002-9939-1988-0958088-X
- David Ruelle, Historical behaviour in smooth dynamical systems, Global analysis of dynamical systems, Inst. Phys., Bristol, 2001, pp. 63–66. MR 1858471
- L. P. Šil′nikov, On a problem of Poincaré-Birkhoff, Mat. Sb. (N.S.) 74(116) (1967), 378–397 (Russian). MR 232999
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308
- Floris Takens, Orbits with historic behaviour, or non-existence of averages, Nonlinearity 21 (2008), no. 3, T33–T36. MR 2396607, DOI 10.1088/0951-7715/21/3/T02
- Laura Tedeschini-Lalli and James A. Yorke, How often do simple dynamical processes have infinitely many coexisting sinks?, Comm. Math. Phys. 106 (1986), no. 4, 635–657. MR 860314, DOI 10.1007/BF01463400
- Dmitry Turaev, Polynomial approximations of symplectic dynamics and richness of chaos in non-hyperbolic area-preserving maps, Nonlinearity 16 (2003), no. 1, 123–135. MR 1950779, DOI 10.1088/0951-7715/16/1/308
- Brendan J. Weickert, Nonwandering, nonrecurrent Fatou components in $\textbf {P}^2$, Pacific J. Math. 211 (2003), no. 2, 391–397. MR 2015743, DOI 10.2140/pjm.2003.211.391
- Jean-Christophe Yoccoz, Introduction to hyperbolic dynamics, Real and complex dynamical systems (Hillerød, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 464, Kluwer Acad. Publ., Dordrecht, 1995, pp. 265–291. MR 1351526
Bibliographic Information
- Pierre Berger
- Affiliation: Sorbonne Université, Université de Paris, CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche, 4, place Jussieu – Boite Courrier 247 75252 Paris Cedex 05 France
- MR Author ID: 845093
- ORCID: 0000-0001-5268-0229
- Email: pierre.berger@imj-prg.fr
- Sébastien Biebler
- Affiliation: Université de Paris, Sorbonne Université, CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Bâtiment Sophie Germain, Boite Courrier 7012, 8 Place Auref́lie 75205 Paris Cedex 13 France
- Email: sebastien.biebler@imj-prg.fr
- Received by editor(s): January 20, 2020
- Received by editor(s) in revised form: April 6, 2021
- Published electronically: June 30, 2022
- Additional Notes: The authors were partially supported by the ERC project 818737 Emergence of wild differentiable dynamical systems.
- © Copyright 2022 by Pierre Berger and Sébastien Biebler
- Journal: J. Amer. Math. Soc. 36 (2023), 397-482
- MSC (2020): Primary 28D20, 37E30, 37G25, 37G05, 37F46; Secondary 37B10, 37C40, 37D45, 37A99, 32A10
- DOI: https://doi.org/10.1090/jams/1005
- MathSciNet review: 4536902
Dedicated: To Mikhail Lyubich on his 60th birthday