Quantitative sheaf theory
HTML articles powered by AMS MathViewer
- by Will Sawin, A. Forey, J. Fresán and E. Kowalski;
- J. Amer. Math. Soc. 36 (2023), 653-726
- DOI: https://doi.org/10.1090/jams/1008
- Published electronically: August 17, 2022
- HTML | PDF | Request permission
Abstract:
We introduce a notion of complexity of a complex of $\ell$-adic sheaves on a quasi-projective variety and prove that the six operations are “continuous”, in the sense that the complexity of the output sheaves is bounded solely in terms of the complexity of the input sheaves. A key feature of complexity is that it provides bounds for the sum of Betti numbers that, in many interesting cases, can be made uniform in the characteristic of the base field. As an illustration, we discuss a few simple applications to horizontal equidistribution results for exponential sums over finite fields.References
- Alan Adolphson and Steven Sperber, On the degree of the $L$-function associated with an exponential sum, Compositio Math. 68 (1988), no. 2, 125–159. MR 966577
- A. Beilinson, Constructible sheaves are holonomic, Selecta Math. (N.S.) 22 (2016), no. 4, 1797–1819. MR 3573946, DOI 10.1007/s00029-016-0260-z
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- E. Bombieri, On exponential sums in finite fields. II, Invent. Math. 47 (1978), no. 1, 29–39. MR 506272, DOI 10.1007/BF01609477
- Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1995. Translated from the German manuscript; Corrected reprint of the 1985 translation. MR 1410059
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
- P. Deligne, La conjecture de Weil. II, Publ. Math. IHES (1980), no. 52, 137–252.
- Pierre Deligne, Finitude de l’extension de $\Bbb Q$ engendrée par des traces de Frobenius, en caractéristique finie, Mosc. Math. J. 12 (2012), no. 3, 497–514, 668 (French, with French and Russian summaries). MR 3024820, DOI 10.17323/1609-4514-2012-12-3-497-514
- Pierre Deligne and Yuval Z. Flicker, Counting local systems with principal unipotent local monodromy, Ann. of Math. (2) 178 (2013), no. 3, 921–982. MR 3092473, DOI 10.4007/annals.2013.178.3.3
- Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, Vol. 340, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II); Dirigé par P. Deligne et N. Katz. MR 354657
- A. Forey, J. Fresán, and E. Kowalski, Arithmetic Fourier transforms over finite fields: generic vanishing, convolution, and equidistribution, https://arxiv.org/abs/2109.11961.
- Étienne Fouvry, Emmanuel Kowalski, and Philippe Michel, Counting sheaves using spherical codes, Math. Res. Lett. 20 (2013), no. 2, 305–323. MR 3151649, DOI 10.4310/MRL.2013.v20.n2.a8
- Étienne Fouvry, Emmanuel Kowalski, and Philippe Michel, An inverse theorem for Gowers norms of trace functions over $\mathbf F_p$, Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 2, 277–295. MR 3091520, DOI 10.1017/S030500411300025X
- Étienne Fouvry, Emmanuel Kowalski, and Philippe Michel, Algebraic trace functions over the primes, Duke Math. J. 163 (2014), no. 9, 1683–1736. MR 3217765, DOI 10.1215/00127094-2690587
- Étienne Fouvry, Emmanuel Kowalski, and Philippe Michel, Algebraic twists of modular forms and Hecke orbits, Geom. Funct. Anal. 25 (2015), no. 2, 580–657. MR 3334236, DOI 10.1007/s00039-015-0310-2
- Étienne Fouvry, Emmanuel Kowalski, and Philippe Michel, On the conductor of cohomological transforms, Ann. Fac. Sci. Toulouse Math. (6) 30 (2020), no. 1, 203–254.
- Javier Fresán, Équirépartition de Sommes exponentielles [travaux de Katz], Astérisque 414, Séminaire Bourbaki. Vol. 2017/2018. Exposés 1136–1150 (2019), Exp. No. 1141, 205–250 (French). MR 4093200, DOI 10.24033/ast.1085
- Lei Fu, Etale cohomology theory, Revised edition, Nankai Tracts in Mathematics, vol. 14, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. MR 3380806, DOI 10.1142/9569
- Kazuhiro Fujiwara, Independence of $l$ for intersection cohomology (after Gabber), Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., vol. 36, Math. Soc. Japan, Tokyo, 2002, pp. 145–151. MR 1971515, DOI 10.2969/aspm/03610145
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), no. 2, 253–280. MR 1826370, DOI 10.1007/s002220100122
- A. Grothendieck (ed.), Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques, vol. 3, Société Mathématique de France, Paris, 2003, Séminaire de géométrie algébrique du Bois Marie, 1960–61.
- Chris Hall, Jonathan P. Keating, and Edva Roditty-Gershon, Variance of arithmetic sums and $L$-functions in $\Bbb F_q[t]$, Algebra Number Theory 13 (2019), no. 1, 19–92. MR 3917915, DOI 10.2140/ant.2019.13.19
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR 1070716, DOI 10.1007/978-1-4757-2103-4
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- Nicholas M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Annals of Mathematics Studies, vol. 116, Princeton University Press, Princeton, NJ, 1988. MR 955052, DOI 10.1515/9781400882120
- Nicholas M. Katz, Exponential sums and differential equations, Annals of Mathematics Studies, vol. 124, Princeton University Press, Princeton, NJ, 1990. MR 1081536, DOI 10.1515/9781400882434
- Nicholas M. Katz, Sums of Betti numbers in arbitrary characteristic, Finite Fields Appl. 7 (2001), no. 1, 29–44. Dedicated to Professor Chao Ko on the occasion of his 90th birthday. MR 1803934, DOI 10.1006/ffta.2000.0303
- Nicholas M. Katz, Moments, monodromy, and perversity: a Diophantine perspective, Annals of Mathematics Studies, vol. 159, Princeton University Press, Princeton, NJ, 2005. MR 2183396
- Nicholas M. Katz, Convolution and equidistribution, Annals of Mathematics Studies, vol. 180, Princeton University Press, Princeton, NJ, 2012. Sato-Tate theorems for finite-field Mellin transforms. MR 2850079
- Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, RI, 1999. MR 1659828, DOI 10.1090/coll/045
- Reinhardt Kiehl and Rainer Weissauer, Weil conjectures, perverse sheaves and $l$’adic Fourier transform, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 42, Springer-Verlag, Berlin, 2001. MR 1855066, DOI 10.1007/978-3-662-04576-3
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- Emmanuel Kowalski, Philippe Michel, and Will Sawin, Bilinear forms with Kloosterman sums and applications, Ann. of Math. (2) 186 (2017), no. 2, 413–500. MR 3702671, DOI 10.4007/annals.2017.186.2.2
- Emmanuel Kowalski, Philippe Michel, and Will Sawin, Stratification and averaging for exponential sums: bilinear forms with generalized Kloosterman sums, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 1453–1530. MR 4288639, DOI 10.2422/2036-2145.201805_{0}02
- Laurent Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), no. 1, 1–241 (French, with English and French summaries). MR 1875184, DOI 10.1007/s002220100174
- Gérard Laumon, Comparaison de caractéristiques d’Euler-Poincaré en cohomologie $l$-adique, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 3, 209–212 (French, with English summary). MR 610321
- G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 131–210 (French). MR 908218, DOI 10.1007/BF02698937
- Takeshi Saito, The characteristic cycle and the singular support of a constructible sheaf, Invent. Math. 207 (2017), no. 2, 597–695. MR 3595935, DOI 10.1007/s00222-016-0675-3
- Takeshi Saito, Characteristic cycle of the external product of constructible sheaves, Manuscripta Math. 154 (2017), no. 1-2, 1–12. MR 3682201, DOI 10.1007/s00229-016-0913-4
- Terence Tao and Van Vu, Additive combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006. MR 2289012, DOI 10.1017/CBO9780511755149
- Naoya Umezaki, Enlin Yang, and Yigeng Zhao, Characteristic class and the $\varepsilon$-factor of an étale sheaf, Trans. Amer. Math. Soc. 373 (2020), no. 10, 6887–6927. MR 4155195, DOI 10.1090/tran/8187
- Wolmer V. Vasconcelos, Computational methods in commutative algebra and algebraic geometry, Algorithms and Computation in Mathematics, vol. 2, Springer-Verlag, Berlin, 1998. With chapters by David Eisenbud, Daniel R. Grayson, Jürgen Herzog and Michael Stillman. MR 1484973, DOI 10.1007/978-3-642-58951-5
Bibliographic Information
- Will Sawin
- Affiliation: Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
- MR Author ID: 1022068
- Email: sawin@math.columbia.edu
- A. Forey
- Affiliation: EPFL/SB/TAN, Station 8, CH-1015 Lausanne, Switzerland
- MR Author ID: 1231383
- ORCID: 0000-0002-5999-3831
- Email: arthur.forey@epfl.ch
- J. Fresán
- Affiliation: CMLS, École polytechnique, F-91128 Palaiseau cedex, France
- MR Author ID: 816893
- ORCID: 0000-0002-8550-6646
- Email: javier.fresan@polytechnique.edu
- E. Kowalski
- Affiliation: D-MATH, ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland
- MR Author ID: 250736
- Email: kowalski@math.ethz.ch
- Received by editor(s): March 4, 2021
- Received by editor(s) in revised form: November 22, 2021, and February 1, 2022
- Published electronically: August 17, 2022
- Additional Notes: The first author was supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zürich Foundation and by NSF grant DMS-2101491. The second and fourth authors were supported by the DFG-SNF lead agency program grant 200020L_175755. The second author was supported by SNF Ambizione grant PZ00P2_193354. The third author was partially supported by the grant ANR-18-CE40-0017 of the Agence Nationale de la Recherche.
- © Copyright 2022 American Mathematical Society
- Journal: J. Amer. Math. Soc. 36 (2023), 653-726
- MSC (2020): Primary 14F20; Secondary 11T23
- DOI: https://doi.org/10.1090/jams/1008
- MathSciNet review: 4583773